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ÖZET 

 

 

LAMİNE CAM PLAK YAPILARININ DELAMİNASYON ANALİZİ 

 

Oyar F. Aydın Adnan Menderes Üniversitesi, Fen Bilimleri Enstitüsü, İnşaat 

Mühendisliği Programı, Yüksek Lisans Tezi, Aydın, 2022. 

 

Amaç: Bu çalışmada amaç, lamine cam plak yapılarının delaminasyon analizi için 

matematiksel bir model geliştirmektir.  

Materyal ve Yöntem: Bu çalışmada, lamine bir cam tabakada delaminasyon incelenmiştir. 

Deformasyon ve gerilme denklemleri varyasyonel yaklaşım, minimum potansiyel enerji 

teoremi ve sonlu elemanlar yöntemi ile elde edilir. Geliştirilen matematiksel modelde 

kullanılan varsayımların doğrulanması için lamine cam levha bir sonlu eleman yazılımı 

kullanılarak modellenmiştir. 

Bulgular: Lamine cam, iki kat camın PVB (Polivinil butiral) veya farklı bir yapıştırıcı ile ısı 

ve basınç yardımı ile birleştirilmesiyle oluşturulan bir cam türüdür. Herhangi bir darbe yükü 

ile karşılaşıldığında etrafa yayılmaz ve örümcek ağı şeklinde çatlaklar oluşur. Bu çalışmanın 

konusu, lamine cam levha yapıların delaminasyon analizidir. Delaminasyon, kompoziti 

oluşturan katmanların ayrılması olarak tanımlanır. Kompozit katmanlar arasındaki düşük 

mukavemet nedeniyle en yaygın hasar türüdür.  

Sonuç: Malzeme sertliği kaybı ve malzeme ömrünün kısalması gibi sonuçlar verebildiği 

için önemli bir çalışma konusudur. 

 

Anahtar Kelimeler: Delaminasyon Analizi, Lamine Cam Plak, Matematiksel Modelleme, 

Sonlu Elemanlar Yöntemi, Varyasyonel Yaklaşım, Doğrusal Olmayan Davranış.  
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ABSTRACT 

 

 

DELAMINATION ANALYSIS OF LAMINATED GLASS PLATE STRUCTURES 

 

Oyar F. Aydın Adnan Menderes University, Graduate School of Natural and Applied 

Sciences, Civil Engineering Program, Master Thesis, Aydın, 2022. 

  

Objective: The object of this study is to improve a mathematical model for delamination 

analysis of laminated glass plate structures. In this study, delamination is investigated in a 

laminated glass plate. 

Material and Methods: Deformation and stress equations are obtained by the variational 

approach, finite element method and minimum potential energy theorem. For the 

verification of assumptions used in the developed mathematical model the laminated glass 

plate is modeled using a finite element software.  

Results: Laminated glass defined as a type of glass created by combining two layers of 

glass with PVB (polyvinyl butyral) or a different adhesive with the help of heat and 

pressure. When faced with any impact load, it does not spread around and cracks in the form 

of spider webs occur. The subject of this study is delamination analysis of laminated glass 

plate structures. Delamination is defined as the separation of the layers that make up the 

composite. It is the most common type of damage due to low strength between composite 

layers. 

Conclusion: It is an important study subject because it can produce results such as loss of 

material hardness and shortened material life. 

 

Keywords: Delamination Analysis, Finite Element Method, Laminated Glass Plate, 

Mathematical Modelling, Variational Approach, Nonlineer Behavior.  
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1. INTRODUCTION 

 

 

1.1. Glass 

 

Since ancient times, glass has been used as both construction and ornamental items. 

Today, it still has a very common usage area, from the simplest tools to communication and 

space technologies. Glass is a material that is always encountered in daily life. 

Glass is used as the main material in many sectors in a wide range of products, from 

the window to the drinking glass, from the lid of the washing machine to the glasses. It is a 

fluid material formed by the dissolution of instantly cooled alkali and alkaline earth metal 

oxides and some other metal oxides, and its main material is silicon. Glass solidifies, 

preserving its amorphous structure. Due to rapid cooling during production, an amorphous 

structure is formed instead of a crystalline structure. This structure gives the glass strength 

and transparency. 

The most classic explanation of glass production is explained by Paul (1990) as 

follows: 

When the liquid freezes, its fluidity decreases, and at a certain degree below the 

freezing point, this fluidity approaches almost zero. Thus, the liquid becomes solid. 

In general, glass production process consists the following stages: 

Raw Material: Mostly silica-based materials such as sand, limestone, feldspar, 

dolomite, soda, sodium sulfate are made suitable for melting, cleaned and stocked. 

Blend: According to the glass to be produced, the above-mentioned materials are 

mixed according to certain recipes. 

Melting: The blend is melted by heating up to 1500-1600ºC in special furnaces using 

natural gas, fuel-oil or electricity. 

Shaping: Melted glass shaping, again according to the product's feature taken into 

sections. Blowing, pressing, rolling, flotation, tossing, flowing etc. It is put into the desired 

form by one of the methods. 
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Cooling: Glass, which is a very fragile material in its natural state, is reheated and 

cooled in a controlled manner and is relieved of internal tension. This makes the material 

more durable. 

Storage: Depending on the characteristics such as organization, market and product, 

the glass product is stored with special packaging and storage equipment. 

Shipping: Since glass is not a bulk and rough cargo, its transportation also requires 

special vehicles. Glass is transported with trucks and transport equipment produced for this 

purpose. 

Glass, which passes through these stages, is used as auxiliary material or raw material 

in many sectors. For example, glass is widely used in the packaging industry, as it does not 

react chemically with the various substances put into it. The fact that it is environmentally 

friendly and a highly recyclable material makes glass both useful and preferable. This 

feature also means raw material and energy savings for manufacturers. 

It would not be wrong to say that there are different types of glass in terms of glass 

types. Glasses, each of which has different features in itself, also bring different advantages 

for users. In fact, it is possible to say that the advantages and features it provides are 

effective in glass selection. While some of them are in an important position in terms of 

durability, some of them add difference to their environment with their aesthetic 

appearance. For this reason, it is useful to dwell on some of the glass types. Now, let us give 

information about the most curious glasses among the varieties. 

Tempered Glass: It is among the structurally very durable glass models. Tempered 

glass, also known as reinforced or toughened glass, does not break into small pieces when 

broken, minimizing the risk of injury. Due to its durable structure, it is often preferred on 

the exterior. 

Reflective Glasses: It is one of the very effective glasses for breaking the heat from 

the sun. It is produced by applying a metallic coating to the surface. The metallic coating 

applied to the surface also creates a mirror effect and thus makes the interior visible. It is 

generally seen on the exterior of buildings. 

Double Glazing: It may consist of two or three flat panes. In double glazing, it 

consists of spaces filled with vacuum or gas between the layers. In addition, double glazing, 

which offers effective solutions for energy saving, is also used a lot for sound insulation. 
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Laminated Glass: Combination of at least two or more glass plates. PVB (Polyvinyl 

Butyral) is used in the production of these glasses, and the glasses are brought together by 

heat and pressure. In addition to its durable structure, laminated glasses are glass models 

that stand out in sound insulation with their acoustic types. The areas where they are 

generally used are safety and automobile windows. By tempering laminated glasses, it is 

possible to increase their strength to higher levels. 

 

1.1.1. Laminated Glass 

 

Laminated glass defined as a material obtained by combining two or more layers of 

glass with one or more PVB interlayers under high temperature (145ºC) and pressure (13 

bar) and with very high mechanical strength properties. It has taken its place in our daily life 

as a modern building material that can be used easily in places where all kinds of safety and 

security precautions are desired, by removing all the borders related to the use of glass. 

Laminated glass provides the building with strength and beauty, durability and 

openness while meeting its design needs. In addition to being long-lasting, its ability to meet 

many functions is provided only with laminated glasses, where the durability and strength of 

the glass and the flexibility of the plastic material meet. The strong, harmonious glass 

material, obtained as a result of the combination, offers a material that provides a wide 

range of design possibilities and has eye-catching properties to meet every need. 

 

 

Figure 1.1. Laminated glass unit. 

 

Depending on the design needs, laminated glasses can be made using softened glass 

layers, tempered, chemically or thermally reinforced glasses, which are obtained by 

softening slowly after cooling. It is very easy to work with laminated glasses in buildings 
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and to replace them. 

Laminated glass has become a very important material among the contemporary 

building materials with the opportunities it provides to the building industry in terms of 

providing important structural performance features and benefits. 

Laminated glasses are for human and human safety. The way to be able to use it, is to 

know and learn about laminated glass. Laminated glass, the use of which is increasing 

rapidly in the world, is now in the world standards and specifications for human safety, life 

and property safety, etc. It has become a modern building material that has been made 

compulsory for many reasons. In other words, the use of laminated glass is obligatory 

wherever there is the slightest possibility of harming people. With the recognition of the 

intermediate layer material PVB (Polyvinyl Butyral), which gives laminated glasses all 

mechanical strength properties, it is now the first material that comes to mind in designs. 

Universities that provide technical training in this regard also have a great job to do. 

All materials, such as laminated glass, should be transferred to the students immediately, 

and students should be guided to the most appropriate use of these new materials even in 

their designs, and they should be made aware of the business. In this way, a student with up-

to-date material knowledge will always be able to choose and apply the most appropriate 

material with a choice ability to decide for the better. 

Since our subject is laminated glass, lectures and seminars should be given and spread 

at universities with the help of the authorities of the companies, if necessary, so that the core 

structure of engineering is recognized by the students. 

Even if these things are not fulfilled, the use of laminated glass with PVB will become 

a necessity as a result of the imposition of living standards and living conditions, and will 

become widespread. 

Conditions and experiences will in the process make laminated glass necessary for the 

building and especially for the human being. In addition, laminated glass will gain its 

importance in our daily life as a mandatory modern building material over time. 

 

 

 

 



5 

1.1.1.1. Benefits of Laminated Glass 

 

Benefits of laminated glass can be listed as: 

 It doesn't disintegrate in case of breakage, the parts stay in situ, and prevents the 

danger of injury, protect life and property. 

 It prevents or delays entry in attacks and theft attempts with tools like stones and 

sticks. 

 With its low UV transmittance, it prevents the passage of UV rays by 97-99%, 

 It ensures that the natural colors of the things are preserved for a extended period of 

your time. 

 It contributes to noise control. Internal partitions, doors, windows, curtain facades, 

showcases, overhead and skylight glasses, windbreakers, railings are some examples 

of using areas of laminated glass. 

There are some important issues to be considered during the processing, stocking and 

application of shatterproof glass and they can be summarized as: 

The edges of the shatterproof glass shouldn't be left exposed in reality with water, but 

should be protected. 

There's a risk of thermal breakage in safety glass. Micro and macro cracks that will 

occur during edge cutting of shatterproof glass increase this risk. One of the ways to 

eliminate the danger is to deburring or grinding the sides of the glass. 

Laminated glass storage conditions should lean maximum attention. Care should be 

taken to not be plagued by humidity and temperature conditions. 

Corrosion may occur if safety glass is replaced after cutting without being washed and 

completely dried. For this reason, if glass is to be installed as one unit, it should be installed 

after washing and drying. 

Glasses that compose safety glass (perforated glasses, etc.) could also be tempered or 

partially tempered because of static reasons. 
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1.1.1.2. Delamination 

 

Delamination is defined as the separation of the layers that make up the composite. It 

is the most common type of damage due to low strength between composite layers. It is an 

important study subject because it can produce results such as loss of material hardness and 

shortened material life. 

Delamination is a failure mode due to the loss of adhesion between the layers of 

laminated composites. Delamination may be due to breakage or separation in adhesive or 

resin, fracture in reinforcement. It tends to degrade the durability and strength as well as the 

aesthetic appearance of the material. Including laminate composites, concrete and composite 

materials many materials can fail due to delamination. 

As mentioned delamination is caused by poor bonding. Therefore, delamination is an 

insidious type of failure as it develops inside the material without being visible on the 

surface. 

The delamination error can be detected in the material by its sound. While a solid 

composite has a bright sound, layered part has a dull sound. 
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2. LITERATURE REVIEW 

 

 

As the usage of laminated glass is increasing research studies about laminated glass 

structures is increasing day by day. 

Hooper(1973) examined the basic behavior of laminated glass in bending. For this 

purpose, theoretical and experimental studies were carried out on the four-point bending 

motion of laminated glass beams. Data on tests conducted on small laminated glass beams 

subjected to both temporary and long-term loading at various ambient temperatures were 

presented. It has been shown that the degree of bonding between the two layers of glass is 

found to be a function of the loading time and the ambient temperature and is mainly 

depend on the shear modulus of the PVB interlayer. 

Phillip Davies and Robert Cadwallader (1983) worked on delamination issues with 

laminated glass. In their study, they have analyzed causes of delamination and the ways of 

prevention of it. Test data on the edge stability of laminated glass in their products has been 

provided and detailed the various delamination problems that can occur if proper glass 

handling and installation practices are not followed. 

Vallabhan (1983) used Von Karman equations for symbolize the behavior of 

rectangular thin glass units under lateral pressures. It was supposed that the glass plate is 

simply supported for in-plane deflections in supports. Using the iterative finite difference 

technique, nonlinear equations were solved. The number of repeats was reduced by using an 

insufficient relaxation parameter. 

Vallabhan et al. (1985) investigated the behavior of laminated glass units subjected to 

lateral pressure symbolizing wind loads. It has been found that the laminated glass unit like 

a solid sheet of glass of the same nominal thickness at room temperature. It was concluded 

that at higher temperatures [170 °F (77 °C)] the behavior differs and approaches the 

laminated glass unit without an interlayer. Experimental stress analyzes designed to 

differentiate the behavior of laminated glass and monolithic glass were compared with the 

results of theoretical stress analyzes. 

Behr et al. (1986) investigated the impact of loading time and interlayer thickness on 

laminated glass. Full-scale laminated glass laboratory specimens were tested. Effects caused 
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by long-term loads and varying interlayer thicknesses were observed. It has been noticed 

that the interlayer thickness effects on the structural response of the laminated glass unit are 

not large. 

Vallabhan et al. (1993) made a research of laminated glass units by calculus of 

variations and the minimum potential energy theorem. Five nonlinear differential equations 

with suitable boundary conditions were had and solved numerically. Experiments were 

performed to measure stresses and lateral displacements at various positions above and 

below the units to verify the mathematical model. The experimental results were compared 

with the results from the mathematical model. 

F. Shen et al. (2001) modeled delamination growth in laminated composites. It was 

relevant to the estimation of delamination growth and computational modeling of 

delamination in laminated composites. The experimental results were compared and it was 

predicted that the fatigue cycle and the delamination front would grow together. Evolution 

criteria based on total strain energy release rate predicted slower delamination growth rate 

than evolution criteria based on components of stress energy release rate. 

Valeria La Saponara et al. (2001), for the delamination growth in double cantilever 

laminated beams conducted an experimental and numerical analyze. Using experiments and 

finite element models, delamination crack growth in laminated composites was investigated. 

For multilayer double cantilever beam laminates under plane stress conditions, it has been 

shown that it is sufficient to calibrate the binder elements from experimental load 

displacement data. In addition, dynamic crack growth was observed in notched laminates in 

the finite element model. 

Z. Zou et al. (2002) modeled continuous media damage for delaminations in laminated 

composites. In the context of the sustained damage mechanics in the article, delamination, a 

typical mode of interface damage in laminated composites, was tackled. The model was also 

applied to estimate the failure strength of the overlapping layer blocking samples. The 

results were compared with the available experimental and alternative theoretical results and 

discussed. 

Z. Zou et al. (2002) applied a delamination model to laminated composite structures. 

A model is presented for staged lamination layers in laminated composite structures. A 

study on the effect of mesh size was found to give sufficiently accurate results in a relatively 

coarse mesh. It was also concluded that these examples are a useful indicator of the 
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versatility and applicability of the current approach for real structural applications. 

Timothy J. Saxe et al. get. (2002) examined the effects of glass type and missile size 

on the impact resistance of "sacrificial floor" laminated glass. Experiments were conducted 

to improve the "sacrificial floor" design concept for laminated glass. The concept authorizes 

the effects of wind-induced debris to break through the outer laminated glass floor, while 

the inner layer is protected to carry the wind pressure inside while maintaining wind-

induced residual effects in the wind. Regardless of the outer glass floor type, it was found 

that laminated glass made of fully tempered or heat strengthened inner glass sheets has a 

significantly higher average minimum fracture rate than laminated glass made with 

tempered glass units. On the contrary, it has been found that converting the outer glass layer 

from tempered to fully tempered glass reduces the average minimum fracture rate regardless 

of the type of the inner glass layer. 

Aşık (2003) made a study to reveal the nonlinear behavior of laminated glass plate 

units. For in-plane and lateral displacements which are obtained by the variational approach, 

nonlinear behavior of laminated glass unit was symbolized by five nonlinear partial 

differential equations. Linear algebraic equations were had by using the finite difference 

method by typing differential equations on the separate points of the glass plate units. The 

results showed that maximum stress is traveling and complex stress areas are developing. 

L. R. Dharani and J. Yu (2004) examined the failure modes of glass units exposed to 

soft missile effects. The stress response and onset of fracture of glass units affected by a 

huge soft missile were analyzed using the finite element method. Energy release rate criteria 

were developed to determine crack initiation location and time for crack initiation. The 

effects of different loading, geometric and material parameters on maximum failure and 

stress modes were investigated. 

D. Coutellier et al. (2005) presented a method for delamination detection within 

laminated structures. A methodology aimed at evaluating the behavior of delaminated 

composite structures has been developed. His work consisted of two parts: First, the 

detection of delamination in damaged thin laminated structures was discussed. These 

layered structures are modeled using multilayer shell elements in the finite element method 

(FEM) computation code. Second, the impacts of delamination on the general behavior of 

the structure was gaged. Satisfactory consistency was demonstrated for damage mechanisms 

and delamination patterns in different samples. Different aspects of the delamination 
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approach are presented. 

Shuangmei Zhao et al. (2005) analyzed the damage to laminated automotive glass 

subjected to a simulated head impact. The impact and failure resistance of laminated 

automotive glass exposed to simulated head impact, a structural model based on Continuity 

Damage Mechanics (CDM) was developed and applied to an axisymmetric finite element 

model. Different geometric values were researched for determining the effects of laminated 

glass on impact resistance. 

Aşık and Tezcan (2005) improved a model for the behavior of laminated glass beams. 

In the development of the model suppose that huge displacement for a laminated composite 

beam, the minimum total potential energy principle was used. The mathematical model was 

verified by finite element and experimental models for fixed and simply supported beams. It 

has been observed that the behavior of laminated glass beams huge displacements can be 

linear or nonlinear under constraints or boundary conditions. 

Foraboschi (2007) examined the behavior and failure resistance of laminated glass 

beams. In the research, an analytical model is symbolized which presages the stress and 

strength development of laminated glass beams, which includes a multi-layer system that 

authorizes displacements in the shear-flexible intermediate layer. No specific simplifying 

assumption was made when formulating the work, so the theoretical model has been proven 

by comparison test results with predictions. The closed form of the model authorizes both to 

explain to correlate structural performance with mechanical and geometric parameters and 

the behavior of laminated glass. 

Paolo Foraboschi (2012) developed an analytical model for laminated-glass plate. He 

solved the equations for the rectangular plate, which was simply supported under a static 

charge uniformly distributed laterally. 

Laura Galuppi and Gianni Royer-Carfagni (2012) investigated laminated beams with 

viscoelastic interlayer. They analytically solved the time-dependent problem of a simply 

supported laminated beam, consisting of two elastic layers bonded with a viscoelastic 

interlayer and modeled with a series of Prony’s Maxwell elements. They emphasized that 

there was a remarkable difference between the results obtained by numerical analysis of a 

full 3-D viscoelastic finite element and the stress state calculated in the full viscoelastic state 

or equivalent elastic problem and stress. 

Foraboschi (2012) presented an analytical model of laminated glass unit. Mechanical 
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behavior is explained by three complete and explicit systems of equations. The equations 

are solved for the rectangular plate that is simply supported under the laterally 

homogeneously distributed static load. Because the model is both analytical and open, the 

mechanical behavior of the laminated glass sheet can be better understood. 

Hooper et al. (2017) researched the delamination properties of laminated glass 

windows under blast loading. The delamination process was studied at realistic deformation 

rates to understand the resulting reaction force response. Experimental tensile tests were 

performed on previously cracked laminated glass samples to investigate the delamination 

behavior. The experiments confirmed the presence of a plateau in the force deflection 

graphs and showed that the delamination process absorbs a significant amount of energy. 

The laboratory results were then used to calibrate the FEA models of the delamination 

process to determine the delamination energy of the glass layers and polyvinyl butyral 

(PVB) and its relationship to the deformation rate. 

In the past few decades, a growth in the use of laminated glass units in various 

industrial areas such as civil engineering, aerospace engineering, marine and automotive has 

been noticed. Correspondingly, an increase in the demand to analyze the mechanical 

behavior of laminated glass has been realized. As seen in the mentioned studies, the existing 

research on laminated glass is mainly analyze behavior of laminated unit, and the relevant 

research about delamination is rarely mentioned. Moreover, the related theoretical research 

which analyze nonlinear behavior of delaminated glass unit is relatively less and it is far 

behind its application in engineering. The present research is aimed to anallyze 

delamination, which is one of the most common problems in the use of laminated glass. 
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3. MATERIAL AND METHODS 

 

 

3.1. A New Mathematical Model for Laminated Glass Plate Units Subjected to Initial 

Delamination 

 

Laminated glass plate is composed of interlayer and glass plates connected to each 

other at specific conditions. Laminated glass plate exhibit nonlinear behavior under applied 

lateral loads since it makes very large lateral deflections according to its thickness and there 

is a huge difference between the mechanical properties of glass and intermediate layer. The 

classical assumption that "the plane portion before deformation remains plane after 

deformation" cannot be accepted for a laminated glass sheet due to non-linear behavior. 

Consequently, a new and more practical model is needed and this model is developed by 

Vallabhan, Magdi, Das (1990). The mentioned new model is based on derived using 

variational methods and minimum potential energy theorem. 

Laminated glass plate that is considered in this study is shown in Figure 3.1. In the 

derivation process, to be able to use the advantage of symmetry only quarter of the plate is 

analyzed. 

 

 

Figure 3.1. Axes of reference. 

The mathematical formulation and solution technique which is used by Vallabhan, 
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Magdi and Das (1990) and Magdi (1990) are given below; 

The total potential energy of the system (V) be expressed using glass units and the 

assumptions given for the interlayer as follows: 

(1) (1) (2) (2) (I) (I)

m b m b xz yz
V U U U U U U        (3.1) 

where, 

U
(i)

m
 = membrane strain energy for the glass plate (i), 

U
(i)

b
 = bending strain energy for the glass plate (i); i=1,2 for the top and bottom units, 

U,U
(I)

yz

(I)

xz
= shear strain energy for the interlayer due to the shear strains xz and yz, 

  = potential energy function due to applied loads. 

The bending strain energy function found by Langhaar (1962) is given as: 

dxdyU   U
(i)
b

(i)

b   


b

b

a

a
=

3b a
i

2b a

Eh
  

24(1- )  
   

2 2 2
2 2 22 2

22 2 2

w w ww w
2 2(1 ) dxdy

x y x yyx

 
                    

     
     
     

 (3.2) 

The membrane strain energy functions, which be expressed in terms of strains found 

by Langhaar (1962), are given as: 

dxdyU   U
(i)
m

(i)

m   


b

b

a

a

b a
2 2 2i
ix iy ix iy ixy2b a

1Eh 2 (1 ) dxdye e e e e
22(1- ) 

 
        
     (3.3) 

where, i=1,2 indicates the top and bottom plates. 

e,e,e ixyiyix  are the non-linear membrane strains and which can be expressed in terms 

of the displacements as, 

 

 

 i
ix

21u we
x 2 x


 

 
   (3.4) 
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  
   
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   (3.5) 

and 

i i
ixy

w wu v
e

y x x y

     
     
     

   (3.6) 

a = length of the unit in the x direction, 

b = length of the unit in the y direction, 

hi = thickness of each glass layer, 

E  = Young’s modulus of the glass units, 

 = Poisson’s ratio of the unit, 

The average shear strains, xz and yz., are 

=
z

uw










x
- = /t 

2

h

2

h
uu-

21
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









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



xx
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 (3.7) 

𝛾𝑥𝑧 =
1 2

1 2

h h
t  / tu u

x 2 2
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Similarly, 

=
w v

-
y z

 


 
=

1 2
1 2

w h h
-  / tv v

y y 2 2

    
     
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                                                      (3.8) 

1 2
1 2

yz

w h h
t  / tv v

y 2 2

   
      

   
  

Here, t is the thickness of the PVB interlayer. 

w = lateral deflection of the laminated glass plate, for the top and bottom units. 

ui, ,vi, and hi (i=1,2) = in-plane displacements and thicknesses of top and bottom glass 

x xxz
   

y yyz
  



15 

units. 

The interlayer shear strain energy expressions are written by using the previous two 

equations as follows; 

b a(I) (I)
xzxz b a

   dxdyUU  
   =

t b a 2

I
xz0 b a

1
   dVG

2 
    

Uxz =
2

b a
1 2I

1 2
b a

wG h h
   ( ) t dxdyu u

2t x 2 2 

   
        

     (3.9) 

and 

b a(I) (I)
yzyz b a

   dxdyUU  
   = 

t b a 2

I
yz0 b a

1
   dVG

2 
    

Uyz= 
2

b a
1 2I

1 2
b a

wG h h
   ( ) t dxdyv v

2t y 2 2 

   
     

   
                                              (3.10) 

In these equations, GI is the interlayer shear modulus 

 

Figure 3.2. Laminated glass plate unit: undeformed and deformed sections. 

 

The plate is subject to uniform pressure and   is called as the load potential function 

and it is given as, 

b 2 a 2

b 2 a 2
    dxdy

 
  

b a

b a
  qwdxdy

 
                                                            (3.11) 

Substituting equations 3.2, 3.3, 3.9, 3.10 and 3.11 into Equation 3.1, the total potential 

energy of the system can be written as follows; 

   


b

b

a

a
dxdy UUUUUUV

(I)

yz

(I)

xz

(2)

b

(2)

m

(1)

b

(1)

m
=

b a

b a
  Fdxdy

                  (3.12) 
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Here, F can be expressed as, 

1 2 2 2
1x 1y 1x 1y 1xy2
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The minimum potential energy theorem and variational approach are used to perform 

the deformation and stress analysis of the laminated glass unit. The minimum potential 

energy states that "for protective structural systems, all kinematically acceptable 

deformations make the total potential energy of those corresponding to the equilibrium state 

excessive. If the extreme is minimum, the equilibrium state is stable." 

The total potential energy function is written using in-plane and lateral displacement 

terms such as w, u1, v1, u2, and v2. The Euler Equation given in Langhaar's (1962) study is 

applied to the problem. While five nonlinear differential equations are obtained for 

undelaminated regions of plate, five nonlinear differential equations are obtained for the 

delaminated regions of unit at the end of the mathematical formulation and given as follows: 

Euler Equation, 

2 2 2

2 2

i y y yy

F F F F F F
0

u ui y ui ui y ui y ui  

                  
                                    

 (3.14) 

where, 

ui  = indicates u1, v1, u2, v2, and w, 

ui,x = the first derivation of ui according to x, 

ui,y = the first derivation of ui according to y, 

ui,xx = the second derivation of ui according to y, 

ui,yy = the second derivation of ui according to y, 
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ui,xy = the second order cross derivation of ui, 

The behaviour of laminated regions is governed using the five non-linear equations. 

The equations are obtained by Vallabhan, Magdi and Das (1990) with respect to in-plane 

and lateral displacements, are presented as; 
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(1 ) wG h h
t

2G t 2 2 xh

  
   

 
                   

(3.18) 

2 2 2
I I

2 2 12 2
2 2

1 (1 ) 1 (1 )G G
u

2 2G t 2 x y 2G ty x h h

         
                 
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2 2 2

2 2

w w 1 w 1 w w

y 2 2 x y xy x

      
  

     

1 2I

2

(1 ) wG h h
t

2G t 2 2 yh

  
   

 
                   (3.19) 

To analyze behaviour of delaminated regions of glass plate, Euler equation is applied 

to the total potential energy equation written by neglecting shear strain energy terms. The 

equations govern behaviour of delaminated regions of plate are given below. 

  4

1 2[ ]w qD D  +

2 2 2

1x 1y 1y 1x 1xy2 22

w w wEh1 (e e ) (e e ) (1 )e
x y1- x y

 
       

     

 

+

2 2 2

2
2x 2y 2y 2x 2xy2 2 2

w w wEh (e e ) (e e ) (1 )e
x y1- x y

 
       

     

                                     (3.20) 

2 2 2

1 12 2

1 1
u v

x 2 y 2 x y

       
      

      

2 2 2

22

w w 1 w 1 w w

x 2 2 x y yyx

      
  

    
     (3.21) 

2 2 2

1 12 2

1 1
v u

y 2 x 2 x y

       
      

      

2 2 2

2 2

w w 1 w 1 w w

y 2 2 x y xy x

      
  

     
     (3.22) 

2 2 2

2 22 2

1 1
u v

x 2 y 2 x y

       
      

      

2 2 2

22

w w 1 w 1 w w

x 2 2 x y yyx

      
  

    
     (3.23) 

2 2 2

2 22 2

1 1
v u

y 2 x 2 x y

       
      

      

2 2 2

2 2

w w 1 w 1 w w

y 2 2 x y xy x

      
  

     
     (3.24) 

where, 

D1 = Eh1 / 12 (1-2 ) = the flexural rigidity of the top glass unit,                    (3.25) 

D2 = Eh2 / 12 (1-2 ) = the flexural rigidity of the bottom glass unit,                    (3.26) 

 = the Poisson’s ratio of the unit, 

q = the distributed lateral pressure per unit area, 

GI = the interlayer shear modulus, 

Young’s modulus (E) of the glass is connected with the shear modulus (G) of the glass 

as; 

G =
 

E

2 1
                      (3.27) 
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In equations (3.15) and (3.20), 

4 4 4
4

4 2 2 4
x x y y

2
  

   
   

                                                    (3.28) 

2 2
2

2 2
x y

 
  

 
                     (3.29) 

The classical finite difference method presented in the next section is used to solve the 

equations obtained above. 

To take advantage of symmetry one quarter of glass plate is analyzed in the study. 

Axes are taken as shown in Figure 3.1. The boundary conditions obtained for fixed 

supported rectangular unit subjected to uniform pressure are as; 

At x = 0: 

u1 = 0, 

e1xy = 0, 

u2 = 0, 

e2xy = 0, 

w
0

x





, 

2 2 2

2 2

w w w
2(1 ) 0

x x y y x y

            
          

 

At x = a 

e1x+e1y = 0, 

e1xy = 0, 

e2x+e2y = 0, 

e2xy = 0, 

w = 0, 

w
0

x





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At y = 0 : 

v1 = 0, 

e1xy = 0, 

v2 = 0, 

e2xy = 0, 

.0




y

w
 

2 2 2

2 2

w w w
2(1 ) 0

y y x x x y

            
          

 

At y = b 

e1y +e1x = 0, 

e1xy = 0, 

e2y + e2x = 0, 

e2xy = 0, 

 = 0, 

.0




y

w
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3.2. Finite Difference Forms of Field Equations and Boundary Conditions and the 

Iterative Solution Technique 

 

Considering the symmetry, a quarter plate is focused. Five equations which governs 

the behavior of laminated glass plate obtained. While the differential equations of in plane 

displacements are linear, that of lateral displacement, w, is nonlinear. Due to its non-

linearity, an iterative numerical technique should be used for the solution. 

Equations are transformed into algebraic equations and written in matrix form using 

finite difference method (FDM) which is one of the most applied numerical methods. 

Nonlinear terms of the equations are put into right side and equations are obtained as matrix 

systems. The coefficient matrix of lateral displacement is symmetric banded, while it is full 

coefficient for in plane deflections. On the other hand, since storing full matrices requires 

huge memory, the modified strongly implicit procedure suggested by Zedan and Schneider 

(1981) is used for in-plane deflections in this study. This reduces computational cost and 

storage capacity. 

In the finite difference method, central finite difference technique is used to convert 

the continuous functions u1, v1, u2, v2 and w to separate values at every point of the finite 

difference network. Using the finite difference method, equations 3.15 to 3.19 for non-

delaminated regions and 3.20 to 3.24 for delaminated regions are arranged so that the left-

hand sides are linear and converted into a series of linear algebraic equations. 

The left side of the algebraic equations are stored as a matrix [A] and the right hand 

side vector contains  all the nonlinear terms and applied pressure in the field equation. 

The equations are written as follows: 

[A]w=q + f1 (w, u1, 1, u2, 2                                                                        (3.30) 

where, 

w = the lateral displacement vector, 

q  = applied pressure magnitude. 

The coefficients of the matrix [A] and the corresponding right-hand side equation for 

the grid points in the area as well as those at the boundaries are given below. The presented 

iterative procedure is also used to reach the final solution. 
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The finite difference mesh size is chosen as nx × ny for the lateral displacement, where 

nx and ny are the numbers of subdivisions in the x and y directions. The lateral displacement 

value is zero at simply supported edges and it is not included in the finite difference network 

to reduce the total number of equations. 

According to Magdi's (1990) research, the finite difference form of the lateral 

deflection field equation for a point in the undelaminated region of laminated glass plate is; 

For i =3,4, …. nx –2; j=3,4, ….. ny –2 

Cw(i,j) + Bw(i+1,j) + Bw(i-1,j) + Hw(i+2, j) + Hw(i-2, j)+Jw(i, j+1) + Jw(i, j-1) + Gw(i, j+2) + Gw(i, j-

2)+Fw(i+1,j+1) + Fw(i+1,j-1) + Fw(i-1, j+1) + Fw(i-j , j-1)= RSH(i,j)                                            (3.31) 

where, 

RSH(i,j)=q+    
2 2 2

1

1x 1y 1y 1x 1xy2 2 2

w w wEh
e e e e (1 )e

x y x y2(1- )

 
       
      

 

+    
2 2 2

2

2x 2y 2y 2x 2xy2 2 2

w w wEh
e e e e (1 )e

x y x y2(1- )

 
       
      

 

-
I 1 2 1 2 1 2G u u v vh h t (i, j)

t 2 2 x x y y

             
      

                                                    (3.32) 

  I
1 2 4 2 2 2 2

x y

2

1 2
 

4

x y x y

6 6 8 2 2G h hC t
t

D D
h h h h h h2 2

    
             

    

                        (3.33) 

  2

2

I 1
1 2 4 2 2

x

 

y x

2

x

4 4
B

2
D D

h h h t h

1G h h t
2

   
     

  
    

  
                                 (3.34) 

  4

x

1 2

h

D D
1

H                                                                                                       (3.35) 

 2 2

y

1 2

x

2
F D

h h

D                                                                  (3.36) 

  2

2

I 1 2
1 2 4 2

y x y y

 
2

G h hJ
4 4 1

D D
h h h

t
ht 2 2

  
        

   
   

    
                                             (3.37) 
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  4

y

1 2

h

D D
1

G                                                                                                       (3.38) 

Equation (3.31) is also valid for the solution of delaminated region of unit but since 

the total potential energy of the delaminated region is different than that of the 

undelaminated region, the elements of the elements of right hand side vector and the 

coefficient matrix need to be modified in the delaminated region of unit as given below: 

RHS(i,j)=  q+    
2 2 2

1

1x 1y 1y 1x 1xy2 2 2

w w wEh
e e e e (1 )e

x y x y2(1- )

 
       
      

 

∓    
2

2x 2y 2y 2x

2 2

2
2xy2 2 2

Eh w w w
(1 )e (i, j)e

2(1 ) x y x y
e e e }

  
  

   
 


                                (3.39) 

 1 2 4 4 2 2

x y x y

6 6 8
C D D

h h h h

 
     

 
                                                                          (3.40) 

 1 2 4 2 2

x x y

4 4
B D D

h h h

  
    

 
                                                                                   (3.41) 

 1 2 4

x

D D
1

H
h

                                                                 (3.42) 

 1 2 2 2

x y

2
D

h
F D

h
                                                                 (3.43) 

 1 2 4 2 2

y x y

4 4
J D D

h h h

  
    

 
                                                                                      (3.44) 

  41 2

y

D D
1

G
h

                                                                                                  (3.45) 

Equation 3.31 should be modified at plate boundaries to account for boundary 

conditions. The following equations are obtained, 
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For i=1; j=1 

(i, j) (i 1, j) (i 2, j)

C B H

4 2 2
w w w 

  +
(i, j 1) (i, j 2) (i 1, j 1)

J G
F

2 2
w w w   

  =  
(i, j)

1
RHS

4
    (3.46) 

For i=1; j=2 

(i, j) (i 1, j) (i 2, j) (i, j 1)

C G J
B H

2 2
w w w w  


   +

(i 1, j 1)
Fw  



(i 1, j 1)
Fw  

 =  
(i, j)

1
RHS

2
                                                                                                  (3.47) 

For i=1; j=3, ny –1 

(i, j) (i 1, j) (i 2, j) (i, j 1)

C J
B H

2 2
w w w w  

   +
(i, j 1) (i, j 2) (i, j 2)

J G G

2 2 2
w w w  

   

+
(i 1, j 1) (i 1, j 1)

F Fw w   
 =  

(i, j)

1
RHS

2
                                                                       (3.48) 

For i=1; j=ny 

(i, j) (i 1, j) (i 2, j)
(C G) B Hw w w 

   +
(i, j 1) (i, j 2) (i 1, j 1)

J
G F

2
w w w   

  =  
(i, j)

1
RHS

2
   (3.49) 

For i=2; j=1 

(i, j) (i 1, j) (i 1, j) (i 2, j)

C H B B H

2 2 2 2
w w w w  


   +

(i 1, j 1) (i 1, j 1)
F Fw w   


(i, j 2)

Gw 
  

=  
(i, j)

1
RHS

2
                                                                                                          (3.50) 

For i=2; j=2 

(i, j) (i 1, j) (i 1, j) (i 2, j)
(C H G) B B Hw w w w  

     +
(i, j 1) (i, j 1)

J Jw w  (i, j 2)Gw 
 

(i 1, j 1) (i 1, j 1)
F Fw w   

  +
(i 1, j 1) (i 1, j 1)

F Fw w   
 = 

(i, j)
RHS                                       (3.51) 

For i=2; j=3,4, …. ny –1 

(i, j) (i 1, j) (i 1, j) (i 2, j)
(C H) B B Hw w w w  

    +
(i, j 1) (i, j 1)

J Jw w 
 +

(i, j 2)
Gw 

 

+
(i, j 2)

Gw 
+

(i 1, j 1) (i 1, j 1) (i 1, j 1) (i 1, j 1)
F F F Fw w w w       

   = 
(i, j)

RHS                  (3.52) 

(i, j 1) (i, j 2)

J G

2 2
w w 


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For i=2, j=ny 

(i, j) (i 1, j) (i 1, j) (i 2, j)
(C H G) B B Hw w w w  

     +
(i, j 1) (i 1, j 1)

J Fw w  
  

+
(i 1, j 1) (i, j 2)

F Gw w  
 = 

(i, j)
RHS                                                                         (3.53) 

For i=3,4, … nx –1; j=ny 

(i, j) (i 1, j) (i 1, j)

C B B

2 2 2
w w w 

  +
(i 2, j) (i 2, j) (i 2, j)

H H
J

2 2
w w w  

  +
(i 1, j 1)

Fw  
 

+
(i 1, j 1) (i, j 2)

F Gw w  
 =  

(i, j)

1
RHS

2
                                                                     (3.54) 

For i=3,4,….nx –1; j=ny 

(i, j) (i 1, j) (i 1, j) (i 2, j)
(C G) B B Hw w w w  

    +
(i 2, j 1) (i 1, j 1)

H Fw w   


(i 1, j 1)
Fw  

  

(i, j 1) (i, j 2)
J Gw w 

  = 
(i, j)

RHS                                                                            (3.55) 

For i=nx; j=1 

(i, j) (i 1, j) (i 1, j 1)

C H B H

2 2 2
w w w  


  +

(i 1, j 1) (i, j 1) (i, j 2)
F J Gw w w   

  =  
(i, j)

1
RHS

2
  

                                                                                                                                 (3.56) 

For i=nx; j=2 

(i, j) (i 1, j) (i 2, j) (i j, j 1)
(C H G) B H Fw w w w   

     +
(i 1, j 1) (i, j 1)

F Jw w  
  

(i, j 1) (i, j 2)
J Gw w 

  = 
(i, j)

RHS                                                                            (3.57) 

For i=nx; j=3,4, … ny –1 

(i, j) (i 1, j) (i 2, j)
(C H) B Hw w w 

   +
(i, j 1) (i, j 1) (i 1, j 1)

J J Fw w w   
  +

(i 1, j 1)
Fw  

 

(i, j 2) (i, j 2)
G Gw w 

  = 
(i, j)

RHS                                                                            (3.58) 

For i=nx; j=ny 

(i, j) (i 1, j) (i 2, j)
(C H G) B Hw w w 

    +
(i, j 1) (i 1, j 1) (i, j 2)

J F Gw w w   
  = 

(i, j)
RHS       (3.59) 
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For in-plane deflections, Modified Strongly Implicit Method developed by Zedan and 

Schneider (1981), used to have the in-plane deflections u1, v1, u2, v2. With respect to 

boundary conditions, these equations are modified. This method provides less calculation 

time and less storage. According to the study of Aşık (1998), coefficients for undelaminated 

region of unit are as, 

Apu(i,j) u1(i,j) = Awu(i,j) u1(i-1,j) + Aeu(i,j) u1(i+1,j) + Asu(i,j) u1(i,j-1) 

+ Anu(i,j) u1(i,j+1) - Fu1(i,j)                                                                                 (3.60) 

Apu(i,j) u2(i,j) = Awu(i,j) u2(i-1,j) + Aeu(i,j) u2(i+1,j) + Asu(i,j) u2(i,j-1) 

+ Anu(i,j) u2(i,j+1) - Fu2(i,j)                                                                                 (3.61) 

Apv(i,j) v1(i,j) = Awv(i,j) v1(i-1,j) + Aev(i,j) v1(i+1,j) + Asv(i,j) v1(i,j-1) 

+ Anv(i,j) v1(i,j+1) - Fv1(i,j)                                                                                (3.62) 

Apv(i,j) v2(i,j) = Awv(i,j) v2(i-1,j) + Aev(i,j) v2(i+1,j) + Asv(i,j) v2(i,j-1) 

+ Anv(i,j) v2(i,j+1) - Fv2(i,j)                                                                                (3.63) 

In the above equations the coeffcients of delaminated glass unit are given in extended 

form as follows: 

Apu(i,j) = 
 

I2 2

12
G

hx hy


   

Awu(i,j) = Aeu(i,j) =
2

1

hx
 

Asu(i,j) = Anu(i,j) = 
 

2

1

2hy


 

Apv(i,j) = 
 

I2 2

12
G

hy hx


   

Awv(i,j) = Aev(i,j) = 
 

2

1

2hx


 

Asv(i,j) = Anv(i,j) = 2

1

hy
 

Equations 3.60-3.63 can be applied for the delaminated region of unit by modifying 

the coefficient matrix and right hand side vector. The coefficients of delaminated region in 
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extended form are obtained as follows: 

Apu(i,j) =
 

2 2

12

hx hy


  

Awu(i,j) = Aeu(i,j) =
2

1

hx
 

Asu(i,j) = Anu(i,j) = 
 

2

1

2hy


 

Apv(i,j) = 
 

2 2

12

hy hx


  

Awv(i,j) = Aev(i,j) = 
 

2

1

2hx


 

Asv(i,j) = Anv(i,j) = 2

1

hy
 

After obtain the equations in matrix form the iterative solution method, which the 

steps are given below, is applied. 

1. w is assumed, 

2. RHS of equation (3.30) is calculated, 

3. From equation (3.30), w(i,j) is obtained, 

4. w(i,j) = w(i,j) +(1-) wo(i,j), 

5. if 
 

i, j

w(i,j) - wo(i,j)

l
num*wmax




 then stop the iteration, 

6. Fu1(i,j) is calculated and u1 is obtained from equation (3.60), 

7. Fu2(i,j) is calculated and u2 is obtained from equation (3.61), 

8. Fv1(i,j) is calculated and v1 is obtained from equation (3.62), 

9. Fv2(i,j) is calculated and v2 is obtained from equation (3.63), 

10. go to step 2. 

Where  = the variable under relaxation parameter. 
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In order to overcome difficulties in convergence, this parameter is used for w. It is 

calculated with the corresponding interpolation of the lateral deflection wo(i,j) that is 

calculated in the previous section and the non-dimensional maximum deflection 2*w 

(1,1)/(h1+h2) as a result of numerical testing. Lateral deflection (w) is interpolated by using 

max

h

 
 
 

 and in-plane displacements are extrapolated by using  = 1.4. 
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4. RESULTS 

 

 

In this research, certain loads are applied to laminated glass plate with delamination at 

certain points, laminated glass plate unit without delamination, layered glass and monolithic 

glass. The numerical solution of developed mathematical model that describes behaviour of 

different glass types is presented, the obtained partial differential equations are discretized 

using the finite difference method and the resulting matrix systems are solved through a 

software developed with the Fortran programming language. The graphs of the axial 

displacements, lateral displacements and stress are drawn using the Excel program. 

Simply supported laminated glass plate units are tested in this research has 1 m in 

length and 1 m width. Laminated glass is combining of two glass layers and each of them 

has a thickness of 5 mm and the thickness of the interlayer is 0.76 mm. The total thickness 

of the unit is 10.76 mm. The Poisson’s ratio and Young’s modulus of glass are taken to be 

0.22 and 70 GPa, respectively. Poisson’s ratio and shear modulus of the intermediate layer 

are taken as 0.29 and 1000 kPa, respectively. Mechanical and geometrical properties of 

laminated plate are given in Table 4.1. 

In this research; three different delaminated glass plate specimens, laminated glass, 

layered glass which combines two independent glass layers and monolithic glass which 

contains a single sheet of glass are examined by considering both fixed and simply 

supported situations. Representation of laminated, layered and monolithic units are given in 

Figure 4.1 while the locations of delamination in the delaminated specimens are given in 

Figure 4.2. 

 

Table 4.1. Physical properties of laminated glass plate unit. 

 
Dimensions(mm) Poisson’s 

Ratio 

Modulus 

Thickness Length Width E G 

Glass 1 5 1000 1000 0.25 72 GPa 28.8 Gpa 

PVB 0,76 1000 1000 0.29 2900 kPa 1000 kPa 

Glass 2 5 1000 1000 0.25 72 GPa 28.8 GPa 
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Figure 4.1. Laminated, Layered and Monolithic systems. 

  
a) Specimen 1 (delamination between 0-

0.25 m) 

b) Specimen 2 (delamination between 

0.125-0.375 m) 

 
c) Specimen 3 (delamination between 0.25-0.5 m) 

Figure 4.2. The location of delamination for experimental specimens. 

 

4.1. Verification of Model 

 

The objective of this chapter is comparing the obtained displacement values by the 

improved mathematical model with results of finite element model. The assumptions used in 

the current mathematical model are validated using a simulation done by using ABAQUS 

software (version 6.14) for laminated unit and Specimen 1. Results of finite element model 

are checked with the results from the improved model for laminated glass plate subjected to 

lateral pressure. 
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Present model is constructed to scrutinize behavior of delaminated and laminated 

glass plate which combines two glass layers and an intermediate layer. Delaminated glass 

plate is subjected to initial delamination. In the first step the results of laminated unit are 

confirmed using finite element package program. The laminated glass unit considered in this 

research has nominal size of the 1x1 m. Each of the glass plate has the same nominal 

thickness is h1=h2=0.005 m. Poisson’s ratio and modulus of elasticity of the glass plates are 

assumed as ν=0.25 and E=72 GPa, respectively. Shear modulus of elasticity and nominal 

thickness of the PVB are accepted as 1287 kPa and 0.00076 m, respectively. The 3-D finite 

element model is created and solved via ABAQUS software (version 6.14). The plate is 

subjected to uniformly distributed pressure. Since the unit may undergo large deflection, 

analysis are conducted considering ‘‘geometric nonlinearity’’ option. To get more efficient 

and correct solution conducting less iteration and to get a faster convergence, meshes are 

created using Twenty node quadratic brick elements (C3D20R). Using the advantage of 

symmetry a quarter laminated glass plate is modeled. The boundaries of unit are modelled 

symmetric at the center and fixed at the edges of unit as shown in Figure 4.3. 

Horizontal and vertical degrees of freedom of all the nodes of the plate unit are set to 

be zero. The representation of load and boundary conditions of unit can be seen in Figure 

4.3. Each unit in the laminated glass plate is divided into nearly 10000 elements. To bond 

the layers of laminated glass unit tie constraint option is used. In the delaminated regions of 

plate unit the constraints are not created and layers were not bounded each other to be able 

to analyze effect of delamination 

Figures 4.4 and 4.5 show the representation of constraints for laminated and 

delaminated glass unit. Delaminations are arranged at the center of plate between 0 and 0.25 

m. Results of mathematical and finite element model are taking place in Table 4.2 and 

Figure 4.6 for laminated unit while the comparison of results for delaminated glass units are 

given in figure 4.7. Maximum difference between the results is about 7.2% at most for 

laminated glass unit while it is 7.9 % for delaminated glass plate. An appearance of contours 

of lateral displacements obtained from ABAQUS is seen in Figures 4.8 and 4.9. At the 

center of unit, lateral deflection takes its maximum value. 
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Figure 4.3. Boundary conditions of unit 

 

 

Figure 4.4. Constraints of delaminated glass unit. 
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Figure 4.4. Constraints of laminated glass unit. 

 

Table 4.2. Comparison of the results for the fixed supported laminated glass plate. 

Load (kPa) Finite Element Model (mm) Mathematical Model (mm) Error (%) 

0.5 0.258 0.278 7.260 

1 0.514 0.554 7.214 

1.5 0.768 0.827 7.148 

2 1.018 1.095 7.063 

2.5 1.263 1.358 6.986 

3 1.503 1.614 6.855 

3.5 1.737 1.862 6.714 

4 1.964 2.103 6.592 

4.5 2.185 2.335 6.442 

5 2.389 2.560 6.676 

 

 

Figure 4.6. Comparison of the central deflection values for laminated glass plate. 
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Table 4.3. Deflection values of delaminated glass plate. 

Load (kPa) Finite Element Model (mm) Mathematical Model (mm) Error (%) 

0.5 0.240 0.260 7.853 

1 0.479 0.519 7.693 

1.5 0.717 0.775 7.489 

2 0.953 1.028 7.254 

2.5 1.187 1.276 6.989 

3 1.418 1.519 6.661 

3.5 1.645 1.757 6.356 

4 1.869 1.988 5.970 

4.5 2.088 2.212 5.605 

5 2.302 2.430 5.255 

 

 

Figure 4.7. Comparison of deflection values for delaminated glass plate. 

 

 

Figure 4.8. A view of contours of lateral deflection values of delaminated glass unit. 
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Figure 4.9. A view of contours of lateral deflection values of laminated glass unit. 

 

4.2. Numerical Results of Fixed Supported Laminated Glass Plate Under to Uniform 

Distributed Load 

 

Numerical analysis is performed for the physical properties given in Table 4.1. A 

crosscheck of the linear and nonlinear approach to suppose the behavior of the compressed 

laminated glass sheet is shown in Figures 4.10 and 4.11. In Figure 4.10, linear and non-

linear solution results are drawn as normalized deflection against load. The nonlinearity 

level is the ratio of the deviation in the center of the plate to the thickness of the individual 

glass plates. It can be seen in Figure 4.10 that this ratio (non-linearity level) is around 0.88 

for a P=10 kPa load. Consequently, it can be interpreted that, the level of nonlinearity is 

nearly 0.88 for applied 10 kPa pressure. The central displacement obtained from the linear 

approximation is nearly 1.24 of times greater than the displacement obtained with the 

nonlinear approximation at P=10 kPa load. It is also observed from the figure that while the 

results of linear and nonlinear approach are very close to each other till 3.5 kPa load value , 

after this value the difference between the results begins to widen. Figure 4.11 is plotted to 

observe the linear and non-linear stress values. Similar to displacement values, the stress 

values for linear behavior are higher than the stress values of nonlinear behavior although 

the difference between the results is smaller with respect to displacement. In contrary to 

deflection values separation between the results starts for higher load values. 
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Figure 4.10. Normalized maximum deflection ( )max

h

w
versus load for fixed supported 

laminated glass plate. 

 

 

Figure 4.11. Stress versus load for fixed supported laminated glass plate. 

 

Figures 4.12 and 4.13 show the normalized deflection and stress versus load graphs 

obtained using linear and nonlinear model for Specimen 2. It is observed from the Figure 

4.12 that the level of nonlinearity for delaminated specimen is 0.867 for P=10 kPa pressure 

value and its smaller than that of laminated specimen. The result of linear solution is nearly 

1.34 times higher than the result of nonlinear solution. If we compare with respect to that of 

laminated glass the difference between the results of linear and nonlinear approaches we 

observe that differences are greater for delaminated unit for both stress and normalized 

deflections. 
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Figure 4.12. Normalized maximum deflection ( )max

h

w
versus load for fixed supported 

delaminated glass plate. (Specimen 2). 

 

 

Figure 4.13. Stress versus load for fixed supported delaminated glass plate. (Specimen 2). 

 

The modified model, in the current study, has also capable of predicting the behaviour 

of laminated, layered and monolithic glass plates. Figures 4.14 and 4.15 are plotted for the 

comparison of the behaviour of delaminated glass plates with laminated, layered and 

monolithic plates. In the figures below, it is presumed that origin pass through the center of 

the glass. Figures 4.14 and 4.15 are plots of deflection and maximum stress against load, 

respectively. 
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It is observed from Figure 4.14 that displacement values of laminated and delaminated 

glass units are limited by layered and monolithic units. Displacements of Specimen 3 which 

has delamination at the boundary of unit are very close to those of layered unit. It’s safe to 

say delamination has an increasing and decreasing effects on displacement values according 

to location of the delamination region. Delamination causes an increase in displacement and 

stress if it at the boundary of unit. Figure 4.15 shows that while the stress values of 

Specimen 3 take the highest values, stress values of Specimen 2 and Specimen 1 are 

delimited by values of laminated and monolithic specimens. 

 

 

Figure 4.14. Maximum deflection versus load. 
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Figure 4.15. Maximum stress versus load. 

 

Figures 4.16 and 4.17 show the axial deflections in x direction along the diagonal of 

unit (u1 and u2) for top and bottom glass sheets, respectively. Figure 4.16 shows that while 

the axial displacement values of other units change their sign along the diagonal, axial 

displacements of laminated glass units are negative along the diagonal. In Figure 4.17, the 

axial deflections of bottom glass unit take both positive and negative values for Specimen 3 

and layered unit. For Specimen 1, Specimen 2 and laminated unit they are positive along the 

diagonal. The axial displacements of the top unit are lower than those of the bottom unit for 

the mentioned units. 

 

 

Figure 4.16. Top glass unit’s axial displacement in x direction along the diagonal. 
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Figure 4.17. Bottom glass unit’s axial displacement in x direction along the diagonal. 

 

Figures 4.18 and 4.19 are plotted to symbolize axial displacements directed along y 

direction (v1 and v2) through the diagonal for the top and bottom units. Displacements in y 

direction (v1 and v2) are zero at the center and at the corner of the quarter plate. They are 

also zero at a node within the domain. Specimen 3 and layered unit take maximum value 

close to center of the unit. In contrary, the other units take maximum value close to the 

corner of the plate unit. Similar to u1 values, v1 values of laminated glass are negative along 

the diagonal. Bottom glass axial displacements (v2) of laminated glass unit are positive 

along the diagonal. Bottom glass axial deflection (v2) of Specimen 3 and layered unit take 

positive and negative values along the diagonal. 

 

 

Figure 4.18. Top glass unit’s axial displacement in y direction along the diagonal. 
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Figure 4.19. Bottom glass unit’s axial displacement in y direction along the diagonal. 

 

Change of lateral displacements of glass units along the diagonal are given in figure 

4.20. Maximum value of lateral displacements are taking place at the center of the unit 

while their minimum value are taking place at the corner as zero. As can be seen from figure 

displacement lines of layered unit and Specimen 3 are nearly coincident and they are greater 

than the other units. Displacement lines of monolithic unit are smaller than the other units. 

Displacement values of Specimen 1 and Specimen 2 are limited by the lines of monolithic 

and laminated glass units. 

Figures 4.21 and 4.22 show the lateral displacements of the glass plates at the 

centerline in x and y direction. At the center of the plate, lateral displacements take their 

maximum value. For cases of Specimen 1, Specimen 2 and laminated unit the lateral 

displacements are very close to each other. The maximum displacements are observed in the 

layered glass unit; the minimum displacements are observed in the monolithic glass unit. 
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Figure 4.20. Lateral displacement of the unit along the diagonal. 

 

 

Figure 4.21. Lateral displacement of the unit along x direction. 
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Figure 4.22. Lateral displacement of the unit along y direction. 

 

Spread of bottom surface maximum and minimum principal stresses at the centerline 

along x direction for applied P=5 kPa pressure have been given in Figures 4.23 and 4.24, 

respectively. At the center, maximum principal stresses take maximum value as tensile 

stress while they are compressive close to the boundary of unit. Specimen 3 has the 

maximum stress value. In the delaminated regions, stresses of layered unit and Specimen 3 

get closer to each other. Similar to maximum principal stress curves, minimum principal 

stresses are tensile at the center and compressive close to the boundary of unit. 

 

 

Figure 4.23. Maximum stresses on the bottom surface of the glass along the center line at 

y=0. 
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Figure 4.24. Minimum stresses on the bottom surface of the glass along the center line at 

y=0. 

 

Distribution of top surface maximum and minimum principal stresses at the centerline 

along x direction for applied P=5 kPa pressure have been given in Figures 4.25 and 4.26, 

respectively. The principal stresses on the top surface of the unit are tension at the unit 

boundary and compression at the center. Unlike the maximum stresses on the bottom 

surface, the maximum stresses on the top surface have maximum values at the boundary of 

the plate unit. 

 

 

Figure 4.25. Maximum stresses on the top surface of the glass along the center line at y=0. 
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Figure 4.26. Minimum stresses on the top surface of the glass along the center line at y=0. 

 

Figures 4.27 and 4.28 are plotted to represent the maximum and minimum principal 

stresses on the top surface of along the centerline of the plate unit at x=0 for applied 5 kPa 

pressure. Maximum stress on the top surface of the plate is maximum at the unit boundary 

as tensile stress. As seen in Figure 4.27, the maximum stresses at the top surface of the glass 

are compressive between the center and 0,32 m along the centerline at x=0. In Figure 4.28, 

the minimum stresses at the top surface of the plate are compressive between center and 

nearly 0.4 m along the centerline at x=0. At the unit boundary, they take maximum value as 

tensile stress. 

 

 

Figure 4.27. Maximum stresses on the top surface of the glass along the center line at x=0. 
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Figure 4.28. Minimum stresses on the top surface of the glass along the center line at x=0. 

 

Distribution of bottom surface maximum and minimum principal stresses for applied 

P=5 kPa pressure at the centerline along y direction have been given in Figures 4.29 and 

4.30, respectively. The maximum and minimum principal stresses on the bottom surface of 

the glass units are tension to a certain point and compression at the unit boundary. Unlike 

the maximum stresses on the top surface, the maximum stresses on the top surface have 

their maximum values at the boundary of the plate unit as tensile stress. Minimum principal 

stresses on the top surface are compression near the center and they are tension near the 

boundary of plate. The situation is opposite for bottom glass surface while they are tension 

at the center and neighborhood, they are compression in the neighborhood of unit boundary. 
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Figure 4.29. Maximum stresses on the bottom surface of the glass along the center line at 

x=0. 

 

 

Figure 4.30. Minimum stresses on the bottom surface of the glass along the center line at 

x=0. 

 

Figures 4.31-4.34 symbolize the maximum and minimum principal stresses along the 

diagonal of the plate unit at the top and bottom surfaces for applied P=5 kPa pressure, 

respectively. In Figure 4.31, the maximum principal stress of the top surface takes the 

greatest value as compression at the center and they are zero at the corner of unit. Double 

curvature which is proof of nonlinear behavior is observable in the figure. Figure 4.32 

shows how the top surface minimum principal stress changes through the diagonal. It resets 

as it approaches the unit limit, up to this point the minimum stresses are observed as tension. 
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Figure 4.31. Maximum stresses on the top surface of the glass along the diagonal. 

 

 

Figure 4.32. Minimum stresses on the top surface of the glass along the diagonal. 

 

While the 5 kPa pressure is acting on the plate surfaces, the maximum stress of the 

bottom surface is tension along the diagonals shown in Figure 4.33. It is seen that at the 

center of the plate the maximum stresses on the bottom surface of the unit is maximum. The 

minimum stress lines for the same load value on the bottom surface of the unit along the 

diagonal are shown in Figure 4.34. We observe that beyond a certain point (nearly 0.4 

meter), stresses stop being tensile stress and they behave as compressive stress. They are 

maximum at the boundary of the plate. 
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Figure 4.33. Maximum stresses on the bottom surface of the glass along the diagonal. 

 

 

Figure 4.34. Minimum stresses on the bottom surface of the glass along the diagonal. 

 

Figures 4.35 and 4.36 indicate maximum stress versus load curves on the surfaces of 

top layer of laminated glass unit. Maximum principal stresses on the top surface of the glass 

unit are compression while they are tension on the bottom surface of corresponding unit due 

to the applied pressure. In Figure 4.35, the limits of the behavior change for increasing load 

values. For load values less than 2.5 kPa, the lower limit of the behavior is observed as 

behavior of monolithic glass, while it is observed as the behavior of specimen 1 after this 

load value. As observable in the figures, stress values of layered unit and Specimen 3 are 

quite close to each other but those of layered unit are slightly higher. 
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Figure 4.35. Maximum stresses on the top surface of the glass unit. 

 

 

Figure 4.36. Maximum stresses on the bottom surface of the top glass unit. 

 

Figures 4.37-4.38 are plotted to symbolize the maximum principal stresses against 

different load values for the surfaces of bottom glass unit. The maximum principal stresses 

on the top surface of the bottom glass unit are compression. The maximum principal stresses 

at the bottom surface of bottom layer are tension. While the maximum stress level on the top 

surface is observed in the layered unit, the maximum stress on the bottom surface is 

observed in the Specimen 3 glass unit. On the top surface maximum principal stress values 

of delaminated specimens are limited by stress values of layered and laminated unit. In 

contrary on the bottom surface the upper limit is the behavior of Specimen 3. 
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Figure 4.37. Maximum stresses on the top surface of the bottom glass unit. 

 

 

Figure 4.38. Maximum stresses on the bottom surface of the glass unit. 

 

In order to define the behavioral limits of laminated glass units, theoretical stress 

analyzes of laminated and monolithic glass units are performed. The strength factor is 

defined as the ratio of the maximum principal stress of the monolithic glass unit to the 

maximum principal stress of the laminated glass unit. If the PVB interlayer is strong enough 

to transfer the entire shear between the glass units, the strength factor is 1.0, which means 

that the radial compressive strength is similar for laminated and monolithic glass units. 

The stresses and displacements of the monolithic and laminated glass units are 

compared to arrive at the strength factor value of the laminated glass unit. For the laminated 
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unit, the strength factor value is calculated by the following formula; 

Maximum  Principal  Stress  in  Monolithic  Glass  Unit
Strength  Factor = 

Maximum  Principal  Stress  in  Laminated  Glass  Unit
 

Membrane stresses occur as radial pressures increase due to large deformations in 

addition to bending stresses. As a result, the strength factor changes. In Figure 4.39, the 

strength factor value for the fixed supported laminated glass plate unit varies between 0.45-

0.8. As the load increases, the strength factor value increases slightly. While approximate 

values are observed in other laminated glass units, the lowest strength factor value is seen in 

Specimen 3. 

 

 

Figure 4.39. Strength factor for the fixed supported laminated plate. 

 

For fixed supported laminated glass plate, contours of the maximum and minimum 

principal stress values on the top and bottom glass units for applied 5 kPa pressure are 

shown in Figures 4.40-4.55. 

Maximum principal stress contours for the top and bottom glass surfaces of Specimen 

1 are presented in Figure 4.40 and 4.41, respectively. On the top surface of the unit 

maximum principal stresses are tension and they are at the boundaries of the quarter plate. 

The maximum principal stress on the bottom surface of the unit are tension and located at 

the center of the unit. 

Minimum principal stress contours are given in Figure 4.42 for the top of the unit 
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(Specimen 1) and in Figure 4.43 for the bottom unit. The minimum principal stress on both 

of the surfaces are at the boundaries of the quarter plate. Minimum principal stresses take 

maximum value as compression on bottom surface and tension on top surface. The 

maximum stresses develop at the boundary of unit on both of the surfaces. 

 

 

Figure 4.40. Contours of maximum principal stress on the top surface of Specimen 1. 

 

 

Figure 4.41. Contours of maximum principal stress on the bottom surface of Specimen 1. 
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Figure 4.42. Contours of minimum principal stress on the top surface of Specimen 1. 

 

 

Figure 4.43. Contours of minimum principal stress on the bottom surface of Specimen 1. 

 

Maximum principal stress contours of Specimen 2 are given in Figure 4.44 for the top 

surface and in Figure 4.45 for the bottom surface of the unit. The maximum principal stress 

at the top surface is at the boundaries of the quarter plate. The maximum principal stress on 

the bottom surface of the glass is located in the center of the unit. It has been observed that 
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there is a region where stresses are zero in the top and bottom plates. Maximum principal 

stresses are tensile on the top surface at the boundaries of unit and compressive on the 

bottom surface. In the center the situation is opposite. 

The minimum principal stress contours of Specimen 2 are shown in Figures 4.45 and 

4.46 for the top and bottom surface of the unit. The minimum principal stress on the bottom 

surface of the glass and the top surface of the glass are at the boundaries of the quarter plate. 

 

 

Figure 4.44. Contours of maximum principal stress on the top surface of Specimen 2. 

 



56 

 

Figure 4.45. Contours of maximum principal stress on the bottom surface of Specimen 2. 

 

Figure 4.46. Contours of minimum principal stress on the top surface of Specimen 2. 
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Figure 4.47. Contours of minimum principal stress on the bottom surface of Specimen 2. 

 

Maximum principal stress contours are given in Figure 4.48 for top of the Specimen 3 

and in Figure 4.49 for the bottom of the unit. The maximum principal stress at the top 

surface take maximum value at the boundaries of the quarter plate as tensile stress while 

they are compressive stress at the center of the whole plate. The maximum principal stress 

on the bottom surface of the glass is located in the center of the whole unit. 

The minimum principal stress contours are given in Figure 4.50 for the top of the unit 

which has delamination at the boundary of unit (Specimen 3) and in Figure 4.51 for the 

bottom of the unit. The minimum principal stress on the bottom surface of the glass and the 

top surface of the glass are at the boundaries of the quarter plate. 
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Figure 4.48. Contours of maximum principal stress on the top surface of Specimen 3. 

 

 

Figure 4.49. Contours of maximum principal stress on the bottom surface of Specimen 3 
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Figure 4.50. Contours of minimum principal stress on the top surface of Specimen 3. 

 

 

Figure 4.51. Contours of minimum principal stress on the bottom surface of Specimen 3. 

 

Maximum principal stress contours are given in figure 4.52 for the top of the 

laminated glass unit and in Figure 4.53 for the bottom of the unit. The maximum principal 

stress at the top surface is at the boundaries of the quarter plate. The maximum principal 

stress on the bottom surface of the laminated unit is located in the center of the unit. Similar 

to the delaminated units, zero stress region is observable for laminated glass unit. 



60 

The minimum principal stress contours are given in Figure 4.54 for the top of the 

laminated unit and Figure 4.55 for the bottom unit. The minimum principal stress on the 

bottom and top surface of  laminated unit are at the boundaries of the quarter plate. 

 

Figure 4.52. Contours of maximum principal stress on the top surface of laminated glass 

unit. 

 

 

Figure 4.53. Contours of maximum principal stress on the bottom surface of laminated 

glass unit. 
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Figure 4.54. Contours of minimum principal stress on the top surface of laminated glass 

unit. 

 

Figure 4.55. Contours of minimum principal stress on the bottom surface of laminated glass 

unit. 
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Contour plots of lateral displacement distribution of glass plates subjected to 5 kPa 

pressure e are given for a quarter laminated glass plate unit to have an accurate observation. 

Lateral deflection contours are plotted in figures 4.57-4.59. The maximum lateral 

displacement is at the center of the unit. Below figures show that displacements are 

maximum for Specimen 3 which has delamination at the boundary of unit while they are 

minimum for Specimen 1 which has central delamination. 

 

Figure 4.56. Contours of lateral displacement of Specimen 1. 
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Figure 4.57. Contours of lateral displacement of Specimen 2. 

 

Figure 4.58. Contours of lateral displacement of Specimen 3. 
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Figure 4.59. Contours of lateral displacement laminated glass unit. 

 

4.3. Numerical Results of Simply Supported Laminated Glass Plate Under Uniform 

Distributed Load 

 

To examine the influence of boundary conditions to the mechanical behavior of 

laminated glass plate the current model is rearranged for fixed supported . Tested fixed 

supported laminated glass plate has 1 m in length and 1 m width. It contains two glass layer 

and each of them has a thickness of 5 mm and the thickness of the interlayer is 0.76 mm. 

The total thickness of the unit is 10.76 mm. The Poisson’s ratio and Young’s modulus of 

glass are taken to be 0.22 and 70 GPa, respectively. Poisson’s ratio and shear modulus of the 

intermediate layer are taken as 0.29 and 1000 kPa, respectively. 

The obtained governing equations can be applied for the solution of simply supported 

unit. For simply supported unit subjected to uniform pressure, the boundary conditions are 

as follows: 
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At x = 0: 

u1 = 0, 

e1xy = 0, 

u2 = 0, 

e2xy = 0, 
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0
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
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2 2 2

2 2

w w w
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x x y y x y

            
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At x = a 
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w = 0, 
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At y = 0 : 

v1 = 0, 
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w
 

2 2 2
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w w w
2(1 ) 0

y y x x x y

            
          
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At y = b 

e1y +e1x = 0,  

e1xy = 0, 

e2y + e2x = 0, 

e2xy = 0, 

 = 0, 

2

2

w
0

y

 


 

Figures 4.60 and 4.61 compares results of linear and nonlinear approach to guess the 

behavior of the simply supported glass plate. Normalized deflection against load distribution 

obtained as result of linear and nonlinear approximations are given in Figure 4.60. When the 

nonlinearity level of the maximum deflection to the thickness of a single glass plate is 

greater than 0.9, nonlinear solution must be considered. Figure 4.60 shows that this ratio 

(nonlinearity level) is around 0.9 for a P=4 kPa load. The central deflection from the linear 

approximation is nearly 1.3 times the deflection from the nonlinear approximation at a load 

of P=10 kPa. 

Figure 4.61 symbolizes stress against load distribution obtained using linear and 

nonlinear approximation methods. Unlike the deflection values, the stress values obtained 

by the linear approximation method are lower than those of obtained via nonlinear 

approximation method. While this situation continued until P=7 kPa load, linear behavior 

started to be higher than nonlinear behavior after this load value. 
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Figure 4.60. Normalized maximum deflection ( )max

h

w
against load for simply supported 

laminated glass plate. 

 

 

Figure 4.61. Stress against load for simply supported laminated glass plate. 

 

Figures 4.62 and 4.63 show a comparison of the results obtained via linear and 

nonlinear approach to suppose the behavior of simply supported delaminated glass plate 

(Specimen 2).  The nonlinear approximation method should be considered when the ratio of 

the maximum deviation to the thickness of a glass plate is greater than 0.6. Figure 4.62 

shows that this ratio (non-linearity level) is around 0.6 for a P=3 kPa load. The central 

deflection from linear approximation is nearly 1.2 times the deflection from nonlinear 

approximation at P=10 kPa load. Figure 4.63 shows information about stress versus load for 
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linear and nonlinear behavior. The stress values for the linear response are higher than the 

stress values obtained for the nonlinear response. This situation started after P=4 kPa load. 

 

 

Figure 4.62 Normalized maximum deflection ( )max

h

w
versus load for simply supported 

delaminated glass plate (Specimen 2). 

 

 

Figure 4.63. Stress versus load for simply supported delaminated glass plate (Specimen 2). 

 

Figures 4.64 and 4.65 shows comparison of the response of delaminated glass units 

with the behavior of monolithic, layered and laminated glass plates. In Figure 4.64, the 

maximum displacement is observed in layered glass, while the minimum displacement is 

observed in monolithic glass. According to Figure 4.65, maximum stress is observed in 

Specimen 3 while minimum stress is observed in monolithic glass. 
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Figure 4.64. Comparison of maximum displacements. 

 

 

Figure 4.65. Comparison of maximum stresses. 

 

Figures 4.66 and 4.67 are circumferential displacements (u1 and u2) along the 

diagonal for the top and bottom glass units, respectively. At the beginning of the quarter 

plate, the circumferential displacements are zero, as we expected. After a certain point the 

behavior of the unit changes for layered glass. At the boundary of the quarter plate unit, the 

circumferential displacements take their maximum values. After the maximum values, a 

tend towards negative values is observed. In addition, minimum displacements were 

observed in monolithic glass compared to other glasses. Maximum displacements were 

observed in the layered glass. 
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Figure 4.66. Circumferential displacement in x direction of the top glass unit along the 

diagonal. 

 

 

Figure 4.67. Circumferential displacement in x direction of the bottom glass unit along the 

diagonal. 

 

Figures 4.68 and 4.69 symbolize the axial displacements (v1 and v2) along the 

diagonal for the top and bottom glass units. The axial displacements (v1 and v2) are zero at 

the beginning of the quarter unit, as we expected. For the layered glass unit and Specimen 3; 

the behavior of the units changes at a point in the domain.. Minimum displacements were 

observed in monolithic glass compared to other glasses. 
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Figure 4.68. Axial displacement in y direction of the top glass unit along the diagonal. 

 

 

Figure 4.69. Axial displacement in y direction of the bottom glass unit along the diagonal. 

 

Figures 4.70-4.72 show the lateral displacements of the laminated glass plate at the 

centerline in x, y direction and along the diagonal of the unit, respectively. Lateral 

displacements are maximum at the center while they are zero at the boundary. Lateral 

displacements along the center line took the same values in the x and y directions due to 

geometric properties of unit. As different from the fixed supported effect of delamination is 

more observable in simply supported unit and in simply supported unit lateral deflection 

values of delaminated units are bounded by those of layered and monolithic units. 
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Figure 4.70. Lateral displacement of the unit at the center along the center line at y=0. 

 

 

Figure 4.71. Lateral displacement of the unit at the center along the center line at x=0. 
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Figure 4.72. Lateral displacement of the unit along the diagonal of unit. 

 

Principal stress distributions on the surfaces of units at the centerline along x direction 

for applied P=5 kPa pressure have been given in Figures 4.73 and 4.74, respectively. Along 

the center line maximum principal stresses at the top surface of the glass are compression 

while they are tension on the bottom surface of unit. They do not change sign along the 

center line and have their maximum value at beginning point of the quarter unit. 

 

Figure 4.73. Maximum stresses on the top surface of the glass along the center line at y=0. 
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Figure 4.74. Maximum stresses on the bottom surface of the glass along the center line at 

y=0. 

 

Minimum principal stress curves at the centerline along x direction for applied P=5 

kPa pressure have been given in Figures 4.75 and 4.76. The minimum principal stresses at 

the top surface of the glass unit are compression while they are tension on the surface of 

unit. In Figure 4.76, there tends to be compression towards the end of the line. 

 

Figure 4.75. Minimum stresses on the top surface of the glass along the center line at y=0. 
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Figure 4.76. Minimum stresses on the bottom surface of the glass along the center line at 

y=0. 

 

Figures 4.77 and 4.78 are plotted to symbolize the maximum principal stresses on the 

top and bottom surfaces of the plate unit along the centerline at x=0 for applied P=5 kPa 

pressure. Maximum principal stresses at the top surface of the glass are compression 

through the centerline while they are tension on bottom glass surface. They do not change 

sign through the center line and maximum value as compression at the beginning of quarter 

unit. 

 

Figure 4.77. Maximum stresses on the top surface of the glass along the center line at x=0. 
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Figure 4.78. Maximum stresses on the bottom surface of the glass along the center line at 

x=0. 

 

minimum principal stress curves for applied P=5 kPa pressure at the centerline along y 

direction have been given in Figures 4.72 and 4.73. The minimum principal stresses at the 

top surface of the glass unit are compression through the center line. The minimum principal 

stresses at the bottom surface of the glass unit are tension. There tends to be compression 

towards the end of the line. 

 

Figure 4.79. Minimum stresses on the top surface of the glass along the center line at x=0. 
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Figure 4.80. Minimum stresses on the bottom surface of the glass along the center line at 

x=0. 

 

Figures 4.81-4.84 symbolize the maximum and minimum principal stresses curves 

through plate diagonal on the top and bottom surfaces for applied P=5 kPa pressure, 

respectively. 

Figures 4.81 and 4.82 are plotted to symbolize the maximum principal stress curves at 

the top and bottom surface of the glass unit through the diagonal. The maximum principal 

stresses on the top surface of the glass are compressive in the first half of the diagonal  

while they turn into tension after a certain point on the diagonal. The maximum principal 

stresses at the bottom surface of the glass are the compressive along the diagonal to the end 

of the line. They do not change sign. As different than fixed supported plate stresses at the 

edge of plate are different than zero for simply supported unit. Stresses of simply supported 

unit are greater than those of fixed supported units. 
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Figure 4.81. Maximum stresses on the top surface of the glass along the diagonal. 

 

 

Figure 4.82. Maximum stresses on the bottom surface of the glass along the diagonal. 

 

As seen in Figure 4.83, the minimum stress of the bottom surface is compression 

along the diagonal for applied P=5 kPa pressure value. It is seen that the maximum stresses 

on the top surface of the unit take maximum value at the 0.45. meter of the plate. The 
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point turns into compression. 
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Figure 4.83. Minimum stresses on the top surface of the glass along the diagonal. 

 

 

Figure 4.84. Minimum stresses on the bottom surface of the glass along the diagonal. 
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pressure. In Figure 4.85, the limits of the behavior change for increasing load values. For 
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observable in the Figure 4.86, stress values of layered unit and Specimen 3 are close to each 

other but those of Specimen 3 unit are higher. 
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Figure 4.85. Maximum principal stresses on the top surface of the glass. 

 

 

Figure 4.86. Maximum principal stresses on the bottom surface of the top glass. 
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was observed in Specimen 3. 
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Figure 4.87. Maximum principal stresses on the top surface of the bottom glass. 

 

 

Figure 4.88. Maximum principal stresses on the bottom surface of the glass. 
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quarter unit. It is observed as compression everywhere. The minimum principal stress on the 

bottom surface is towards the center of the unit. It is observed as tension towards the center, 

while compression towards the corners. 

 

 

Figure 4.89. Contours of maximum principal stress on the top surface of Specimen 1. 
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Figure 4.90. Contours of maximum principal stress on the bottom surface of Specimen 1. 

 

 

Figure 4.91. Contours of minimum principal stress on the top surface of Specimen 1. 
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Figure 4.92. Contours of minimum principal stress on the bottom surface of Specimen 1. 

 

Figure 4.93 symbolizes the maximum principal stress contours are given for the top 

unit (Specimen 2) and Figure 4.94 for the bottom unit. The maximum principal stress at the 

top surface is near the center of the quarter unit. It is observed as compression towards the 

center and tension towards the corners. The maximum principal stress at the bottom surface 

is near the center of the unit. It is observed as tension everywhere. The minimum principal 

stress contours of Specimen 2 are given in figure 4.95 and 4.96 for the top and bottom 

surface of the unit. The minimum principal stress on the top surface is towards the centers of 

the quarter of the unit. It is observed as compression everywhere. The minimum principal 

stress on the bottom surface is towards the center of the unit. It is observed as tension 

towards the center, while compression towards the corners. 
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Figure 4.93. Contours of maximum principal stress on the top surface of Specimen 2. 

 

 

Figure 4.94. Contours of maximum principal stress on the bottom surface of Specimen 2. 
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Figure 4.95. Contours of minimum principal stress on the top surface of Specimen 2. 

 

 

Figure 4.96. Contours of minimum principal stress on the bottom surface of Specimen 2. 
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Figure 4.97 symbolizes the maximum principal stress contours for top of the 

Specimen 3 and Figure 4.98 for the bottom unit. The maximum principal stress on the top 

surface is towards the corners of the unit. It is observed as compression towards the 0,1 

point, while tension towards the corners. The maximum principal stress at the bottom 

surface is near the 0,23 meter of the unit. It is observed as tension everywhere. The 

minimum principal stress contours are given in Figure 4.99 for the top of the unit which has 

delamination at the boundary of unit (Specimen 3) and in Figure 4.100 for the bottom unit. 

The minimum principal stress on the top surface is towards the centers of the quarter unit. It 

is observed as compression everywhere. The minimum principal stress on the bottom 

surface is near the 0,13 meter of the unit. It is observed as tension towards the center and 

compression towards the corners. 

 

 

Figure 4.97. Contours of maximum principal stress on the top surface of Specimen 3. 
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Figure 4.98. Contours of maximum principal stress on the bottom surface of Specimen 3. 

 

 

Figure 4.99. Contours of minimum principal stress on the top surface of Specimen 3. 
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Figure 4.100. Contours of minimum principal stress on the bottom surface of Specimen 3. 

 

Figure 4.101 symbolizes the maximum principal stress contours for the top of the 

laminated glass unit and Figure 4.102 for the bottom unit. The maximum principal stress at 

the top surface is at the center of the quarter plate. The maximum principal stress on the 

bottom surface of the laminated unit is located in the center of the unit. 

The minimum principal stress contours are given in Figure 4.103 for the top of the 

laminated unit and Figure 4.104 for the bottom unit. The minimum principal stress on the 

bottom and top units of  laminated unit are at the center of the quarter plate. The minimum 

principal stress take positive and negative values on both surface of laminated unit as seen 

in Figures 4.103 and 4.104. 
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Figure 4.101. Contours of maximum principal stress on the top surface of the laminated 

glass unit. 

 

 

Figure 4.102. Contours of maximum principal stress on the bottom surface of the laminated 

glass unit. 
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Figure 4.103. Contours of minimum principal stress on the top surface of the laminated 

glass unit. 

 

 

Figure 4.104. Contours of minimum principal stress on the bottom surface of the laminated 

glass unit. 
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The contours of the lateral displacements is given for a quarter laminated glass plate 

unit. Lateral displacement contours are plotted in Figures 4.105-4.108. The maximum lateral 

displacements is at the center of the unit. Below figures show that displacements are 

maximum for Specimen 3 which has delamination at the boundary of unit while they are 

minimum for Specimen 1 which has central delamination. 

 

 

Figure 4.105. Contours of lateral displacement of Specimen 1. 
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Figure 4.106. Contours of lateral displacement of Specimen 2. 

 

 

Figure 4.107. Contours of lateral displacement of Specimen 3. 
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Figure 4.108. Contours of lateral displacement laminated glass unit. 
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5. CONCLUSION AND RECOMMENDATIONS 

 

 

Purpose of this chapter is to show the results of improved mathematical model. 

Nonlinear bending theory developed for laminated glass plate by Aşık (2005) is modified 

for laminated glass unit subjected to delamination. The Aşık’s model includes nonlinear 

theory of plates. It was developed using variational calculus and minimum potential energy 

theorem and five nonlinear partial differential equations were had. 

In this research, mentioned field equations and boundary conditions of laminated glass 

unit are rearranged in the delaminated region of the plate. Obtained field equations are 

transformed into nonlinear algebraic equation systems for delaminated and undelaminated 

regions of unit. To obtain convergent solution equations are solved iteratively using 

interpolation parameters. Developed model is capable of solving the problem for different 

plate geometries, different delamination locations and ratios. In the analysis, based on the 

field equations a computer program has been developed for the analysis of delaminated 

glass unit. Obtained solutions are crosschecked with the improved finite element model. The 

finite element model is solved and generated using the ABAQUS finite element program. 

The results of the improved model agree with the finite element results. 

Delamination analysis of laminated glass plate units was performed using a new 

mathematical model and finite difference method. The model contains nonlinear plate 

theory. The minimum potential energy theorem and calculus of variation are used to derive 

five nonlinear partial differential equations with simply and fixed supported boundary 

conditions. Obtained field equations are transformed into nonlinear algebraic equation 

systems for delaminated and undelaminated regions of unit. To obtain convergent solution 

equations are solved iteratively using interpolation parameters. Developed model is capable 

of solving the problem for different plate geometries, different delamination locations and 

ratios. A computer program was developed for the analysis of glass plates with delamination 

in different regions. A number of state problems for displacements, stresses and strength 

factors have been solved and acceptable results have been obtained. 
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The current model is capable of predicting the linear or nonlinear response of 

delaminated glass plate under different load values and boundary conditions. It may be 

observed that the level of delaminated units are lower than nonlinearity level of laminated 

unit. Seperation between lineer and nonlineer solutions starts for smaller load values for 

delaminated units. This means to make better observations about the behavior of 

delaminated units nonlinearity should be considered in the analysis. 

Displacement and stress values for glass plate subjected to delamination in different 

regions are obtained for the use of engineers. Strength of simply and fixed supported 

delaminated glass plates are obtained and compared. Evaluating the obtained results, it is 

deduced that while the response of laminated unit enclosed by the responses of layered and 

monolithic units the situation is different for delaminated glass plates.According to the 

loaction of delaminated region, strength of laminated glass plate could increase or decrease 

and it can be concluded that the delamination zone has a significant effect on the behavior 

of laminated glass plates. Plates with delamination in the center has lower stress values than 

the other delaminated units. 

Analysis of laminated and monolithic glass units provides additional information on 

the behavior of the laminated glass units subjected to uniform lateral pressure using the 

strength factor analyzes. It can be concluded that strength factors of laminated glass unit 

vary according to the location of delamination zones. The strength factors of laminated 

glasses except Specimen 3 are very close to each other and this values varies between 0.7 

and 0.8 for fixed support unit. The strength factor for Specimen 3 is observed between 0.4-

0.5 for different load values. 

 

5.1. Suggestions for Future Studies 

 

Existing software and solution can be modified for different boundary conditions. 

Further investigation can be done for different laminated glass plate thicknesses and 

different delamination zones and different delamination ratios. Delamination analysis of 

laminated glass plate units can be performed and compared to layered glass units. 

Temperature influence, delamination size and location, interlayer thickness and aspect ratios 

can be discussed for future studies. 
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