MEME KANSEERİ HÜCRE DİZİSİNDE (MCF-7)
OLEUROPEİN VE D VİTAMİNİNİN ANTİPROLİFERATİF,
APOPTOTİK VE ANTIÖKSİDAN ETKİLERİİNİN
ARAŞTIRILMASI

Murat ARI
DOKTORA TEZİ

DANIŞMAN
Prof. Dr. Aslıhan BÜYÜKÖZTÜRK karul

İKİNCİ DANIŞMAN
Prof. Dr. Serhan SAKARYA

Bu tez Aydın Aydın Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri Birimi tarafından TPF-17035 proje numarası ile desteklenmiştir.

AYDIN–2018
KABUL VE ONAY SAYFASI

T.C. Aydın Adnan Menderes Üniversitesi Sağlık Bilimleri Enstitüsü Biyokimya (Tıp) Anabilim Dalı Doktora Programı çerçevesinde Murat ARI tarafından hazırlanan “Meme kanseri hücre dizisinde (MCF-7) oleuropein ve D vitamininin antiproliferatif, apoptotik ve antioksidan etkilerinin araştırılması” başlıklı tez, aşağıdaki jüri tarafından doktora tezi olarak kabul edilmiştir.

Tez Savunma Tarihi: 28/09/2018

Üye (T.D.) : Prof. Dr. Aslıhan KARUL ADÜ ............
Üye : Prof. Dr. Serhan SAKARYA ADÜ ............
Üye : Prof. Dr. Cevval ULMAN CBÜ ............
Üye : Prof. Dr. Fatma TANELİ CBÜ ............
Üye : Doç. Dr. Özge ÇEVİK ADÜ ............

ONAY:

Bu tez Aydın Adnan Menderes Üniversitesi Lisansüstü Eğitim-Öğretim ve Sınav Yönetmeliğinin ilgili maddeleri uyarınca yukarıdaki jüri tarafından uygun görülmüş ve Sağlık Bilimleri Enstitüsünün .........tarih ve ......sayılı oturumunda alınan .........nolu Yönetim Kurulu kararıyla kabul edilmiştir.

Prof. Dr. Ahmet CEYLAN
Enstitü Müdürü
TEŞEKKÜR

Doktora eğitimim boyunca en iyi şekilde yetişmemi ve gelişmemi sağlayan her zaman desteğini hissettiğim tez danışmanım Prof. Dr. Aslıhan KARUL’a başta olmak üzere, hocam Prof. Dr. Serhan SAKARYA’ya, zaman ve yardımlarını esirgemeyen Aydın Adnan Menderes Üniversitesi Tıp Fakültesi Biyokimya Anabilim Dalı ailesinin diğer üyelerine, Özge Nur YILMAZ’a, istatistik değerlendirmelerinde destek olan değerli dostum Hakan CENGİZ’e ve uzaklarda da olsa desteğini her zaman hissettiğim arkadaşım Dr. Salih SARI’ya,

Doktora eğitimimde önemli pay sahibi olan başta eşim Uzm. Dr. Hatice Feray ARI olmak üzere sevgili annem Nayile ARI ve rahmetli babam Arif ARI’ya,

Bu çalışmanın gerçekleşmesi için gerekli maddi desteği Bilimsel Araştırmalar Projesi aracılığıyla sağlayan Aydın Adnan Menderes Üniversitesi Rektörliği’ne, Sağlık Bilimleri Enstitüsü personeline ve bugünlere ulaşmamda katkıda bulunulan herkese en içten teşekkürlerimi sunarım.
İÇİNDEKİLER

KABUL VE ONAY SAYFASI ......................................................................................................... i
TEŞEKKÜR .................................................................................................................................. ii
İÇİNDEKİLER ............................................................................................................................. iii
SİMGELEK VE KISALTMALAR DİZİNİ ..................................................................................... vii
ŞEKİLLER DİZİNİ ........................................................................................................................ ix
RESİMLER DİZİNİ ..................................................................................................................... xi
TABLOLAR DİZİNİ .................................................................................................................... xii
ÖZET ............................................................................................................................................... xiv
ABSTRACT .................................................................................................................................... xvi
1. GİRİŞ ........................................................................................................................................... 1
2. GENEL BİLGİLER ..................................................................................................................... 3
2.1. Kanser ..................................................................................................................................... 3
2.1.1. Kanser Oluşumuna Etki Eden Faktörler ........................................................................... 5
2.2. Meme Kanseri ....................................................................................................................... 9
2.2.1. Meme Anatomisi ............................................................................................................. 10
2.2.2. Meme Kanseri Evreleri ............................................................................................... 11
2.2.3. Meme Kanseri Risk Faktörleri ..................................................................................... 12
2.2.3.1. Obezite ..................................................................................................................... 13
2.2.3.2. Beslenme .................................................................................................................. 13
2.2.3.3. Fiziksel aktivite ...................................................................................................... 13
2.2.3.4. Alkol ........................................................................................................................ 13
2.2.3.5. Sigara ........................................................................................................................ 14
2.2.3.6. Genetik kalıtımsal özellikler ................................................................................... 14
2.2.3.6.1. BRCA1 ve BRCA2 genleri .................................................................................. 14

iii
3.3. Kullanılan Çözeltiler ........................................................................................................ 42
3.4. Deney Düzeneginin Oluşturulması ................................................................................. 42
3.4.1. Hücrelerin Çözdürülmesi ......................................................................................... 42
3.4.2. Hücrelerin Pasajlanması ......................................................................................... 43
3.4.3. Hücrelerin Sayılması ve Canlılık Kontrolü .............................................................. 44
3.4.4. Hücrelerin Dondurulması ......................................................................................... 46
3.4.5. MCF-7 Hücreleri İçin Complete Medium Hazırlanması ........................................ 47
3.4.6. MCF-7 Hücrelerinin Kullanımı ................................................................................. 47
3.4.7. Oleuropein Dozunun Belirlenmesi .......................................................................... 47
3.4.8. Vitamin D Dozunun Belirlenmesi ........................................................................... 48
3.4.9. Hücre Proliferasyon Analizi .................................................................................... 49
3.4.9.1. WST-1 Testi (Water Soluble Tetrazolium Test) .................................................. 49
3.4.10. Apoptotik Analizler .............................................................................................. 51
3.4.10.1. Anneksin V testi ............................................................................................ 52
3.4.10.2. Kaspaz-3/7 testi ............................................................................................. 53
3.4.11. Biyokimyasal Analizler .......................................................................................... 56
3.4.12. BCA Protein, SOD, GPx, MDA ve NO Analizleri için Hücrelerden Lizat Eldesi ...... 57
3.4.12.1. Total protein tayini .......................................................................................... 59
3.4.12.2. Biyokimyasal TOS ve TAS analizleri ............................................................... 60
3.4.12.3. SOD aktivite tayini ......................................................................................... 62
3.4.12.4. G-Px aktivite tayini ......................................................................................... 64
3.4.12.5. MDA tayini ...................................................................................................... 66
3.4.12.6. NO tayini ......................................................................................................... 67
3.5. İstatistiksel Yöntemler ................................................................................................. 71
4. BULGULAR ......................................................................................................................... 72
4.1. Hücre Canlılığı Değerlendirme Bulguları .................................................................... 72
4.1.1. Etkin Oleuropein Dozunun Belirlenmesi ........................................................................72
4.1.2. Etkin Vitamin D Dozunun Belirlenmesi ......................................................................74
4.1.3. Oleuropeinin Anti-proliferatif Etkisinin WST-1 Yöntemiyle Belirlenmesi..................76
4.1.4. Vitamin D’nin Anti-proliferatif Etkisinin WST-1 Yöntemiyle Belirlenmesi .................78
4.2. WST-1 Yöntemiyle Elde Edilen Sitotoksitesi Sonuçları................................................80
4.3. Apoptoz Değerlendirme Sonuçları ..................................................................................80
4.3.1. Anneksin V Testi Sonuçları.......................................................................................82
4.3.2. Kaspaz 3/7 Testi Sonuçları.......................................................................................83
4.4. Biyokimyasal Analizler ..................................................................................................84
4.4.1. Total Protein Analizi Sonuçları ..................................................................................84
4.4.2. Biyokimyasal Total Oksidan ve Total Antioksidan Kapasitesi Analizi Sonuçları.......85
4.4.3. Süperoksid Dismutaz (SOD) Aktivite Sonuçları..........................................................89
4.4.4. Glutatyon Peroksidaz (GPx) Aktivite Sonuçları ..........................................................90
4.4.5. Malondialdehit (MDA) Analizi Sonuçları...................................................................91
4.4.6. Nitrik Oksit (NO) Analizi Sonuçları .........................................................................92
5. TARTIŞMA.........................................................................................................................93
6. SONUÇLAR VE ÖNERİLER...............................................................................................112
KAYNAKLAR.......................................................................................................................115
ÖZGEÇMİŞ............................................................................................................................136
<table>
<thead>
<tr>
<th>SİMGELE VE KISALTMALAR DİZİNİ</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>BCA</strong> : Bicinchoninic asit</td>
</tr>
<tr>
<td><strong>BMI</strong> : Vücut kitle indeksi</td>
</tr>
<tr>
<td><strong>BSA</strong> : Sığır serum albumin</td>
</tr>
<tr>
<td><strong>CAT</strong> : Katalaz</td>
</tr>
<tr>
<td><strong>Cd Granülleri</strong> : Kadmiyum granülleri</td>
</tr>
<tr>
<td><strong>DCIS</strong> : Ductal carcinoma in Situ</td>
</tr>
<tr>
<td><strong>DM</strong> : Diabetes Mellitus</td>
</tr>
<tr>
<td><strong>DMSO</strong> : Dimetil sülfoksit</td>
</tr>
<tr>
<td><strong>DNA</strong> : Deoksiribonükleik asit</td>
</tr>
<tr>
<td><strong>DPBS</strong> : Dulbecco’s phosphate buffer saline</td>
</tr>
<tr>
<td><strong>ELIZA</strong> : Enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td><strong>ER</strong> : Östrojen reseptörleri</td>
</tr>
<tr>
<td><strong>G-Px</strong> : Glutatyon peroksidad</td>
</tr>
<tr>
<td><strong>GSH</strong> : Redükte glutatyon</td>
</tr>
<tr>
<td><strong>GST</strong> : Glutatyon-s-transferaz</td>
</tr>
<tr>
<td><strong>LCIS</strong> : Lobular carcinoma in situ</td>
</tr>
<tr>
<td><strong>MCF-7</strong> : Michigan Cancer Foundation-7 (Mammary cell line)</td>
</tr>
<tr>
<td><strong>MDA</strong> : Malondialdehit</td>
</tr>
<tr>
<td><strong>NADPH</strong> : Nikotinamid adenin dinükleotit fosfat</td>
</tr>
<tr>
<td><strong>NBT</strong> : Nitroblue tetrazolium chloride</td>
</tr>
<tr>
<td><strong>NNDA</strong> : N-Naphtylethylene diamine</td>
</tr>
<tr>
<td><strong>NO</strong> : Nitrik oksit</td>
</tr>
<tr>
<td><strong>OD</strong> : Optik dansite</td>
</tr>
<tr>
<td><strong>PTH</strong> : Parathormon</td>
</tr>
</tbody>
</table>
RNA : Ribonükleik asit
ROS : Reactive oxygen species
SF : Serum fizyolojik
SOD : Süperoksit dismutaz
TAS : Total antioxidant status (Total antioksidan kapasite)
TBA : Tiobarbitürik asit
TCA : Trikarboksilik asit
TOS : Total oxidant status (Total oksidan kapasite)
TSG : Tumor supressor gene (Tümör baskılayıcı gen)
WST-1 : Water soluble tetrazolium test
ŞEKİLLER DİZİNİ

Şekil 1. Kanserin Belirteçleri .................................................................................................................. 5
Şekil 2. Hücre siklusu .............................................................................................................................. 7
Şekil 3. Tüm kanserler yaşa standardize insidans hızlarının cinsiyete göre dağılımı  
(Türkiye Birleşik Veri Tabanı) (Dünya Standart Nüfusu, 100.000 Kişide) .............................. 8
Şekil 4. Erkeklerde en sık görülen 10 kanserin yaşa göre standardize edilmiş hızları ............... 8
Şekil 5. Kadınlarda en sık görülen 10 kanserin yaşa göre standardize edilmiş hızları ............... 9
Şekil 6. Memenin ve toplayıcı lenf nodlarının anatomisi .......................................................... 10
Şekil 7. Serbest radikallerin yol açtığı hücre hasarları ................................................................. 18
Şekil 8. Oksidan-antioksidan dengesi ............................................................................................. 18
Şekil 9. Apoptoz ve nekrozun birbirinden farklı yönleri .................................................................. 25
Şekil 10. Nekroz ve apoptozun yolakları ......................................................................................... 27
Şekil 11. Apoptozda oluşan morfolojik değişiklikler ...................................................................... 28
Şekil 12. Erken ve geç apoptozu belirlemek için kullanılan yöntemler ........................................... 28
Şekil 13. Oleuropeinin kimyasal yapı formülü .................................................................................. 30
Şekil 14. Oleuropeinin farmakolojik etkileri .................................................................................... 31
Şekil 15. Vitamin D₂ ve D₃ moleküllerinin kimyasal yapısı ............................................................ 33
Şekil 16. Ergosterolden D₂ vitamini oluşumu .................................................................................... 33
Şekil 17. Kolesterolden D₃ vitamini oluşumu .................................................................................... 34
Şekil 18. Vitamin D metabolizması .................................................................................................... 35
Şekil 19. Vitamin D eksikliğinde etkili mekanizmalar ve ilişkili rahatsızlıklar ............................. 36
Şekil 20. Apoptoz değerlendirme, sağlıklı ve işaretli apoptotik hücreler ........................................ 51
Şekil 21. BCA kalibrasyon grafiği ....................................................................................................... 60
Şekil 22. SOD kalibrasyon grafiği ....................................................................................................... 64
Şekil 23. NO kalibrasyon grafiği .......................................................................................................... 71
Şekil 24. Oleuropeinin 24. saatteki IC50 değeri ................................................................. 77
Şekil 25. Oleuropeinin 48. saatteki IC50 değeri ................................................................... 77
Şekil 26. Oleuropeinin 72. saatteki IC50 değeri .................................................................. 78
Şekil 27. Vitamin D’nin 48. saatteki IC50 değeri ................................................................. 79
Şekil 28. Vitamin D’nin 72. saatteki IC50 değeri ................................................................. 79
Şekil 29. Apoptoz değerlendirme sonuçları ....................................................................... 80
RESİMLER DİZİNİ

Resim 1. İnkübasyon işlemi ........................................................................................................43
Resim 2. MCF-7 hücre hattının çoğaltılması ........................................................................44
Resim 3. Hücrelerin canlılık kontrolü ......................................................................................45
Resim 4. Hücrelerin invert mikroskopta görünümü (40X) ....................................................45
Resim 5. Hücrelerin sayılıması (Arthur™ Automated Cell Counter, NanoEnTek) ..............46
Resim 6. Oleuropein ve vitamin D için doz hesaplamaları ..................................................48
Resim 7. Hücrelerin 96’lı plakkara ekimi ................................................................................51
Resim 8. Hücrelerin 6’lı plakkara ekimi ................................................................................55
Resim 9. Hücrelere IC50 dozlarının verilmesi ........................................................................55
Resim 10. Hücrelerin eppendorflara aktarılması ....................................................................56
Resim 11. Hücrelerin Muse® cell analyzer cihazında okutulması ...........................................56
Resim 12. 25’lik flasklara hücre ekimi ....................................................................................57
Resim 13. Hücrelerin cell scraper ile kaldırılması ....................................................................58
Resim 14. 24 saat oleuropeine maruz kalmış WST-1 testi görüntüsü ....................................72
Resim 15. 48 saat oleuropeine maruz kalmış WST-1 testi görüntüsü ....................................73
Resim 16. 72 saat oleuropeine maruz kalmış WST-1 testi görüntüsü ....................................73
Resim 17. 48 saat oleuropeine maruz kalmış hücrelerin mikroskobik görüntüsü (X40) ....74
Resim 18. 48 saat D vitaminine maruz kalmış WST-1 testi görüntüsü ..................................75
Resim 19. 72 saat D vitaminine maruz kalmış WST-1 testi görüntüsü ..................................75
Resim 20. 48 saat D vitaminine maruz kalmış hücrelerin mikroskobik görüntüsü (X40) ....76
**TABLOLAR DİZİNİ**

**Tablo 1.** Meme kanserinin evrelemesi

**Tablo 2.** Oksidatif stres ile ilişkilendirilen durumlar

**Tablo 3.** Antioksidan sistemler

**Tablo 4.** Apoptoz ve nekrozda morfolojik ve biyokimyasal özellikleri

**Tablo 5.** Oleuropeinin farklı kanser hücre hatlarında antitümör etkisi

**Tablo 6.** D Vitamini ve plazmadaki metabolitleri

**Tablo 7.** Kalsitriolün antikanser etkisinin mekanizması

**Tablo 8.** Çalışmada kullanılan hücre tipi ve hücrenin özellikleri

**Tablo 9.** Çalışmada kullanılan kimyasallar ve sarflar

**Tablo 10.** 48 saatlik ölçümlerde elde edilen yüzde oran (%) apoptoz (Anneksin V) değerleri ve standart hata değerleri (n=3)

**Tablo 11.** 48 saatlik ölçümlerde elde edilen yüzde oran (%) apoptoz (Kaspaz 3/7) değerleri ve standart hata değerleri (n=3)

**Tablo 12.** Anneksin V testi sonuçları

**Tablo 13.** Kaspaz 3/7 testi sonuçları

**Tablo 14.** 48 saatlik ölçümlerde elde edilen ortalama toplam protein miktarı ve standart hata değerleri (n=3)

**Tablo 15.** BCA protein analiz sonuçları

**Tablo 16.** 48 saatlik ölçümlerde elde edilen total oksidan kapasite (TOS) değerleri ve standart hata değerleri (n=3)

**Tablo 17.** Total oksidan kapasite

**Tablo 18.** 48 saatlik ölçümlerde elde edilen TAS değerleri ve standart hata değerleri (n=3)

**Tablo 19.** Total antioksidan kapasite
Tablo 20. 48 saatlik ölçümlerde elde edilen OSİ değerleri ve standart hata değerleri (n=3) ..................................................................................................................87

Tablo 21. Oksidatif stres indeksi (OSİ) .................................................................................................................88

Tablo 22. 48 saatlik ölçümlerde elde edilen SOD değerleri ve standart hata değerleri (n=3) ............................................................................................................................................89

Tablo 23. Süperoksit dismutaz (SOD) aktivitesi ........................................................................................................89

Tablo 24. 48 saatlik ölçümlerde elde edilen GPx değerleri ve standart hata değerleri (n=3) .............................................................................................................................................90

Tablo 25. Glutatyon peroksidaz (GPx) aktivitesi .......................................................................................................90

Tablo 26. 48 saatlik ölçümlerde elde edilen MDA değerleri ve standart hata değerleri (n=3) ..................................................................................................................................................91

Tablo 27. Malondialdehit (MDA) analizi ......................................................................................................................91

Tablo 28. 48 saatlik ölçümlerde elde edilen NO değerleri ve standart hata değerleri (n=3) ...........................................92

Tablo 29. Nitrik oksit (NO) analizi..........................................................................................................................92
ÖZET

MEME KANSERİ HÜCRE DİZİSİNDE (MCF-7) OLEUROPEİN VE D VITAMİNİNİN ANTİPROLIFERATİF, APOPTOTOTİK VE ANTİOKSIDAN ETKİLERİİNİN ARAŞTIRILMASI


Çalışmada oleuropein ve D vitamininin IC50 değerlerini belirlemek için MCF-7 hücre dizisi üzerine oleuropeininin ve D vitamininin farklı konsantrasyonları uygulandı ve sitotoksik aktiviteleri 24, 48 ve 72. saatte WST-1 yöntemi kullanılarak belirlendi. Oleuropein ve D vitamininin 48. saatteki IC50 değerleri bulunduktan sonra hem oleuropein için, hem D vitamini için hem de oleuropein-vitamin D kombinasyonu için apoptotik etkileri belirlemek amacıyla annexin 5 ve kaspaz 3/7 kiti kullanıldı. Biyokimsal parametrelerin tayini için tanımlı IC50 dozları hücrelere uygulandıktan sonra hücre lizatlari elde edildi. Bu numuneler
ile öncelikle hücrenin protein düzeyi hesaplandığı. Sonrasında TOS, TAS, OSİ, SOD, GPx aktivite tayini, MDA ve NO tayini yapıldı.


**Anahtar Kelimeler:** MCF-7, Oleuropein, D Vitamini, Sitotoksisite, Apoptoz, Antioksidan
ABSTRACT

INVESTIGATION OF ANTIPROLIFERATIVE, APOPTOTIC AND ANTIOXIDANT EFFECTS OF OLEUROPEIN AND VITAMIN D ON BREAST CANCER CELL LINES (MCF-7).

Arı M. Aydın Adnan Menderes University, Institute of Health Sciences, Department of Biochemistry, PhD Thesis, Aydın, 2018.

Breast cancer is the most common female and the second most common cause of cancer death in women. In order to find a solution to such a serious health problem, different studies are being done for treatment and the effects of different substances on these diseases are being intensively investigated. The aim of this study was to investigate the antiproliferative, apoptotic and antioxidant effects of oleuropein and vitamin D both individually and in combination.

While chemotherapeutic agents destroy neoplastic cells, some normal cells are also affected, leading to a variety of side effects. Oleuropein has a strong antioxidant effect, which is especially important in reducing side effects of drugs used in cancer treatments and reducing reactive oxygen species (ROS) levels. It has been known that vitamin D is important for calcium absorption and bone health. However, recent studies have revealed that vitamin D modulates breast cancer cell growth and epidemiologic studies suggest increasingly that vitamin D may be associated with reduced breast cancer risk. There are even studies that show that vitamin D has an antioxidant effect.

In this study, different concentrations of oleuropein and vitamin D were applied on the MCF-7 cell lines to determine the IC50 values of oleuropein and vitamin D and cytotoxic activities were determined using the WST-1 method at 24, 48 and 72 h. After finding IC50 values of oleuropein and vitamin D at 48 hours, annexin V and caspase 3/7 kits were used to determine apoptotic effects for both oleuropein, both vitamin D and oleuropein-vitamin D combination. After determined IC50 dose was applied to cells lysate were obtained for determination of of biochemical parameters. These samples first calculated the protein level of the cell. Subsequently, TOS, TAS, OSI, SOD, GPx, MDA and NO determinations were performed.
As a result, we have observed that oleuropein and vitamin D reduces cancer cell proliferation depending on dose and time. At the same time, apoptosis increases explain this inhibition of proliferation. The increase of antioxidant parameters, the other datum that we have obtained, has been supporting the proliferation inhibition and induction of apoptosis. We also observed that the combined use of oleuropein and vitamin D is a strong synergetic effect. In conclusion, we consider that molecular anticarcinogenic mechanisms in MCF-7 cells, combined with single or chemotherapeutic agents, will significantly contribute to the development of new chemotherapeutic and chemopreventive agents for breast cancer treatment.

**Key Words:** MCF-7, Vitamin D, Oleuropein, Cytotoxicity, Apoptosis, Antioxidant
1. GİRİŞ


etkileri aynı anda değerlendirilmemiştir. Bu açıdan çalışma özgün olup, ileride geliştirilecek olan ilaç tedavi stratejilerine temel oluşturması ve literatüre katkı sağlaması hedeflenmektedir.
2. GENEL BİLGİLER

2.1. Kanser


kaynaklanan sarkoma, hemaptopoiyetik hücrelerden kaynaklanan lösemi ve hemaptopoiyetik hücrelerden kaynaklanan ve lenf damarlarında oluşan lenfomadır. Kanserli bir dokunun oluşumu ve metastazın gelişiminde kademeli olarak gözlemленen için altı adet belirteç tespit edilmiştir (Hannahan ve Weinberg, 2000).

- **Büyüme ve sinyal onotomisi:** Kanser hücreleri, büyüme faktör sinyalinden bağımsız bölünürler, çünkü büyüme faktör yolağındaki mutasyon, kontrolsüz büyümeye sebep olurlar.

- **Büyüme inhibitör sinyallerinden kaçınma:** Kanser hücreleri, oluşan mutasyonlar sebebiyle inhibitör sinyallerine yanıt vermez.

- **Apoptotik hücre ölümlerinden kaçınma:** Kanser hücreleri apoptotik sinyale cevap vermezler.

- **Büyüme ve sinyal onotomisi: (sınırsız replikasyon yeteneği)** Kanser hücrelerinde telomeraz uzunluğu korunur, bu yüzden sınırsız sınırsız replikasyon potansiyeli doğar.

- **Anjiyogenez (yeni kan damarlarını oluşumu)** Kanser hücreleri anjiyogenezi uyarır, çünkü yeni kan damarlarının oluşumu tümörün yaşaması ve büyümesi için gereklidir.

- **İnvazyon ve metastaz:** Kanser hücreleri, normal hücrelerin aksine vücudun diğer kısımlarına hareket etme eğilimindedir ve kanser ölümlerinin en büyük nedenidir.

Kanserin temel belirteçleri şekil.1’dede gösterilmiştir.

2.1.1. Kanser Oluşumuna Etki Eden Faktörler

siklusun kontrol mekanizmasında oluşan hatalar sonucu hücre bölünmesi kontrolü kaybedilir, bu hatalar sonucunda kanser gelişimi olabilir (Cabadak, 2008).

düzenleyen protoonkogenlerin çalışmalarını kontrol eden ve aynı zamanda anormal büyümeyi ve malign değişimleri engelleyen tümör baskılayıcı genlerin her iki alleli kaybolduğunda (heterozigotluk kaybi) veya bu genler mutasyona uğradığında kontrol mekanizması bozulur ve buna paralel olarak tümör oluşumu gerçekleşir. Meme kanseri gibi çeşitli pek çok tümörlerde p53 geninin her iki alleleinde kayıp veya nokta mutasyonlar olduğu bildirilmiştir (Yılmaz ve Altunok, 2011). Kanser oluşumuna hazırlayıcı radyasyon, ısı, güneş ışığı, endüstriyel maddeler, kronik irritasyon, beslenme şekli, sigara, alkol, virüs, stres, hareketsiz bir yaşam tarzi, 55 yaş üstünde olmak, yüksek tansiyon, immun yetmezlik gibi pek çok faktör vardır. Kanser oluşumunda çevresel faktörlerin yanı sıra genetik faktörlerin de etkisinin önemli olduğunu bilinmektedir (Erman, 2007).

Kanser insidans hızları ve profilleri gelişmiş ve az gelişmiş ülkelere göre farklılık göstermektedir. Gelişmiş ülkelere erkeklerde daha çok akciğer ve prostat kanseri, kadınlarda ise meme kanseri ve kolorektal kanserler görülenken, az gelişmiş ülkelere erkeklerde akciğer, mide ve karaciğer kanseri, kadınlarda ise meme ve serviks kanseri daha sık görülmektedir. Türkiye’de ise erkeklerde akciğer, mesane ve mide kanserleri sık görülenken, kadınlarda ise meme kanseri ve kolorektal kanserlerin daha sık görüldüğü bildirilmiştir (Jemal ve ark, 2006; Türkiye Kanser İstatistikleri, 2016).

![Hücre siklusu](http://www.belgeci.com/mitoz-bolunme.html)
Şekil 3. Tüm kanserler yaşa standardize insidans hızlarının cinsiyete göre dağılımı (Türkiye Birleşik Veri Tabanı) (Dünya Standart Nüfusu, 100.000 Kişide) (Türkiye Kanser İstatistikleri, 2017)

Şekil 4. Erkeklerde en sık görülen 10 kanserin yaşa göre standardize edilmiş hızları (Türkiye Kanser İstatistikleri, 2017)
Kadınlarda en sık görülen 10 kanserin yaşa göre standardize edilmiş hızları (Türkiye Kanser İstatistikleri, 2017)

2.2. Meme Kanseri

Diğer kanser türlerinden farklı olarak, memenin tümörleri steroid hormonlarından büyük ölçüde etkilenmektedir. Tüm kanser vakalarının %18’ini oluşturan, kadınlara ait kanser sıralamasında dünyada en sık görülen kanser türüdür. Meme kanseri, kansere bağlı ölümlerin %20’ini oluşturan, kadınlara ait kanser sıralamasında dünyada en sık görülen kanser türüdür. Meme kanseri, kansere bağlı ölümlerde akciğer kanserinden sonra ikinci sıradadır (Somunoğlu, 2009; Saip ve ark, 2011). Yaşam boyunca yaklaşık olarak her 1 kadının 10’sinde birinin bu hastalıga yakalanma riskinin ve yakalananlarının üçte birinin de yaşamalarını kaybetme risklerinin olduğu bildirilmektedir (Gölbaşı ve ark, 2010).

tedavi olanakları ortaya çıkmıştır. Meme kanseri tedavisi, günümüzde cerrah, onkolog, radyasyon onkoloğu, radyolog, patolog, psikolog, plastik cerrah, fizioterapist farklı alanlarda uzmanlaşmış hekimler tarafından yapılmaktadır. En önemli tedavi şekilleri, cerrahi operasyon, kemoterapi, hormon tedavisi, radyoterapi ve biyolojik tedavi olarak sıralanabilir.

Normal bir meme gelişiminde hücre çoğalması ve apoptoz sırasında kontrollü bir denge vardır (Sun ve Liu, 2005; Yu ve ark 2006).

2.2.1. Meme Anatomisi


2.2.2. Meme Kanseri Evreleri

Meme kanserleri pek çok değişkene göre belirli evreleere ayrılmıştır. Tümörün oluşumu, boyu ve metastaz durumuna göre çeşitli evreleere ayrılmıştır.


**Evre II;** IIA ve IIB olmak üzere iki alt bölgesinde ayrılmaktadır. Evre IIA’da, memede tümör yoktur, fakat koltuk altındaki lenf bezlerinde kanser vardır. Tümör büyüklüğü 2 cm büyüklüğünde veya daha küçüktür, koltuk altındaki lenf bezlerine yayılmıştır. Ya da 2 cm’den büyük, 5 cm’den küçüktür ve koltuk altı lenf bezlerine sıçramamıştır.

Diğer evre olan evre IIB’de ise tümör büyüklüğü 2-5 cm arasındaadır, koltuk altı lenf bezlerine sıçramamıştır, ya da 5 cm’den daha büyüktür ve koltuk altı lenf bezlerine sıçramamıştır (National Cancer Institute. Stages of Breast Cancer, 2017).


| **Evre 0** | **LCIS:** Kanser süt bezlerinde (lobes) oluşmuşa lobular carcinoma in situ olarak tanımlanır. |
| **Evre I** | **DCIS:** Süt kanallarında (ducts) oluşmuş ise ductal carcinoma in situ olarak tanımlanır. Yüksektilen meme kanserinin başlangıç safhasıdır. Bu evre, tümörün 2 cm’den daha büyük olmadığı ve kanser hücrelerinin memeden başka bir yerlere (lenf bezleri gibi) yayılmadığı durum. |
| **Evre II** | **IIA:** Memede tümör yoktur, ancak koltuk altındaki lenf bezlerinde kanser vardır. Tümör 2 cm büyüklüğünde veya daha küçüktür, koltuk altındaki lenf bezlerine yayılmıştır. Ya da tümör 2 cm’den büyük, 5 cm’den küçüktür ve koltuk altı lenf bezlerine yayılmamıştır. |
| **Evre III** | **IIB:** Tümör 2-5 cm arasındaki, koltuk altı lenf bezlerine sıçranmıştır, ya da 5 cm’den daha büyük ve koltuk altı lenf bezlerine sıçramamıştır. |
| **Evre IV** | **IIIA:** Koltuk altı lenf bezlerinde kanser vardır, ancak memede tümör yoktur veya tümör 5 cm civarında veya daha büyük ve çevre dokulara yayılmamıştır. |
| **Evre IIB:** Tümör herhangi bir boyutta olabilir ve meme komşu dokulara (deri veya göğüs duvarı, kaburgalar veya göğüs duvarındaki kaslar) ve lenf nodlarına yayılmamıştır. |
| **Evre IIC:** Kanser köprücük kemiği altındaki ve meme içerisindeki lenf nodlarına ve meme komşu dokulara yayılma eğiliminde olabilir. |

**2.2.3. Meme Kanseri Risk Faktörleri**

Meme kanseri risk faktörleri; yetersiz beslenme, az miktarda fizyosel aktivite, meme gelişimi sırasında radyasyona maruz kalma, cinsel hormonlar ve genetik yatılık olarak sıralanabilir. Ayrıca erken teşhis meme kanserinden kurtulmanın en önemli anahtarı denilebilir. Erken teşhisde en çok kullanılan yöntem mamografidir (King ve Robins, 2006).
2.2.3.1. Obezite


2.2.3.2. Beslenme

Beslenme içeriği, kanserden korunma ve sağkalım üzerindeki etkisi açısından önemlidir. Yapılan pek çok çalışmada yüksek yağ içeren diyete beslenen endojen estrojen düzeylerindeki artış neden olarak meme kanseri riskini artırdığı gözlemlenmiştir. Zeytinyağı, meyve sebze, kepekli doğal tahıllardı tüketmek, işlenmiş etler ve kırmızı et tüketimini sınırlamak meme kanseri ve diğer kanserlerden korunmak için önemlidir (Kushi ve ark, 2012).

2.2.3.3. Fiziksel aktivite

Düzenli yapılan fiziksel aktivite, kalori alımı ile enerji harcanmasını dengeleyerek ideal vücut ağırlığını korumaya yardımcı olur. Fiziksel aktif bir yaşam tarzı oluşturmak pek çok kanser türü için koruyucu olabilir. Oturmak, uzanmak, televizyon izlemek gibi hareketsiz aktiviteleri sınırlamak önemlidir. Düzenli fiziksel aktivite meme kanseri riskini %30-40 azaltmaktadır (Cummings ve ark, 2009).

2.2.3.4. Alkol

Alkol ağız, farinks, larinks, özofagus, karaciğer kolorektal ve meme kanserleri için risk faktörüdür (Zhao ve ark, 2013). Amerikan Kanser Derneği’nin 2012’de yayınlantığı Kanserden Korunmada Beslenme ve Fiziksel Aktivite Rehberi’nde alkol tüketmeyenlerle kıyaslandığında, alkol tüketenlerde %10-12 yüksek meme kanseri riski olduğu bildirilmiştir (Kushi ve ark, 2012; Cummings ve ark, 2009). Alkole bağlı kanser gelişimi çeşitli faktörlere
bağlanmıştır. Bunlardan bir tanesi etanolün primer metaboliti ve oksidatif stresin sonucunda oluşan asetaldehittir (Varela-Rey, 2013).

2.2.3.5. Sigara

Sigara, en az %30'unun kesin kanserojen olduğu yaklaşık 300 bileşik taşımakta duruyor. Sigara dumanında bulunan en önemli karsinojenik maddeler, polisiklik aromatik hidrokarbonlar, aril aminler, heterosiklik aromatik aminler ve N-nitrosaminlerdir (Bartsch, 2000). Pek çok kohort çalışmada genç yaşta başlayan, uzun süreli içicilerde meme kanseri riskinin arttığı gözlemlenmiştir (Xue, 2011).

2.2.3.6. Genetik kalıtsal özellikler


2.2.3.6.1. BRCA1 ve BRCA2 genleri

2.2.3.7. Östrojen


2.2.3.8. Serbest radikaller ve oksidatif stres


Serbest radikaller üç yolla meydana gelirler.

a) Kovalent bağların homolitik kırmalısı ile: Yüksek sıcaklık ve yüksek enerjili elektromanyetik dalgalar kimyasal bağların kırmılmasına neden olur. Kırmalma esnasında bağın yapısındaki iki elektronun her biri ayrı ayrı atomlara kalırsa iki adet serbest radikal oluşmuş olur.

\[ \mathbf{X} : \mathbf{Y} \rightarrow \mathbf{X} \cdot + \mathbf{Y} \cdot \]
b) Normal bir molekülün elektron kaybetmesi veya heterolitik bölünmesi ile:
Radikal özelliği olmayan bir molekülden elektron kaybı esnasında, molekülün dış orbitalinde paylaşılmamış elektron kalıyorsa radikal form oluşur. Bu tıpte olan bölünmede kovalent bağı oluşturan her iki elektron atomların birinde kalır ve serbest radikal oluşmaz. İyonlar meydana gelir.

\[ X : Y \longrightarrow X :^- + Y ^+ \]

c) Normal bir molekülle elektron transferi ile: Radikal özellik taşımayan bir molekül tek elektron transferi sonucunda molekülün dış orbitalinde paylaşılmamış elektron oluşuyorsa bu tür indirgenme, radikal oluşumuna sebep olabilir.

\[ X + e^- \longrightarrow X .^- \]

Serbest radikaller biyolojik sistemlerde daha çok elektron transferi sonucu oluşur ve oluşan serbest radikallerin çoğu oksijenin indirgenmesi sonucu oluşur (Tamer L ve ark, 2000).

Serbest radikaller normal metabolik olaylar sırasında meydana gelebilir. Aynı zamanda dış etkilere bağlı olarak da oluşabilirler.

**Ekzozjen Kaynaklar:** Ekzozjen etmenler, pestisitler, karbon tetraklorür, parasetamol gibi ilaç toksikasyonları, stres, virüsler, enfeksiyon, iyonize ve ultraviyole radyasyon, hava kirliliği, sigara dumanı, solventler gibi çevresel faktörler, bakır, demir, krom, nikel, civa kadmiyum gibi metal iyonları ve ayrıca asbest lifleri, mineral tozlar ve karbonmonoksit olarak sayılabilir (Atmaca ve Aksoy, 2009).

a) Radyasyon

b) Alkol ve uyuşturucular

c) Çevresel ajanlar (Pestisitler, solventler, ksenobiyotikler, hidrokarbonlar, anestezik maddeler)
d) **Stres:** Streste katekolamin düzeyi artar. Katekolaminlerin oksidasyonu serbest radikal kaynağıdır (Akkuş, 1995).

**Endojen Kaynaklar:** Organizmada rutin bir şekilde meydana gelen oksidasyon ve redüksiyon reaksiyonlarıyla oluşurlar (Ames ve ark, 1993).

a) **Mitokondriyal elektron taşıma zinciri:** Elektron transportu sırasında mitokondride serbest oksijen radikalleri oluşabilmektedir. Ubikinon sitokrom b bölgesi, serbest radikal oluşumunda en etkili olan bölgedir (Seven ve Candan, 1995).

b) **Oksidatif hasar oluşturan türler:** Metabolizma ürünleri ve sinyal molekülleri olarak ortaya çıkabilirler (McCormik ve ark, 2000).

c) **Geçiş metal iyonları:** Mn$^{2+}$, Mo$^{3+}$, Cu$^{2+}$, Fe$^{3+}$, gibi bazı geçiş metalleri de serbest radikal oluşumunda önemli rol oynamaktadır (Halliwel ve Gutteridge, 1990).

d) **Enzimler ve proteinler:** Ksantin oksidaz, flavoprotein dehidrogenaz, dihidroorotat dehidrogenaz, aminoasid oksidaz ve triptofan dioksigenaz gibi enzimler de serbest radikal oluşumuna neden olabilmektedir (Ames ve ark, 1993).

e) **Küçük moleküllerin otooksidasyonu:** Tiyoller, hidrokinonlar, flavinleri flavoproteinler, katekolaminler, tetrahidropridinler ve antibiyotikler gibi küçük moleküller oksido-redüksiyon reaksiyonlarına girerek serbest radikal oluşturabilirler (Ames ve ark, 1993).

f) **Plazma membranı:** Plazma membranında bulunan siklooksigenaz ve lipoooksigenaz enzim sistemlerinin katalize ettiği araşidonik asit oksidasyonu sonucunda serbest radikaller meydana gelir (Kadiiska ve ark, 2005).

g) **Aktive olmuş fagositler:** Aktifleşmiş fagositler bakterileri öldürmek için hidrojen peroksit veya hipoklorik asit oluşturdukları için fagositoz sırasında da hücrede önemli ölçüde serbest radikal oluşabilmektedir (Glutteridge, 1995).

h) **Oksijen moleküllü:** Aerobik organizmalar için O$_2$ esansiyel bir moleküldür. Aynı zamanda O$_2$ esansiyel bir ajandır. Aerobik organizmalarında radikaller daha çok oksijen radikalleri şeklinde bulunmaktadır (Başağa, 1990).

Doku hasarına yol alan bu maddeler, “serbest radikaller”, “oksidan moleküller” ya da “reaktif oksijen türleri (ROS: reactive oxygen species)” olarak adlandırılmaktadır. ROS’un aşırı üretimi de “oksidatif stres” olarak adlandırılmaktadır (Baskol ve ark, 2007).


Oluşan serbest radikaller, hücrelerin lipid, protein, karbonhidrat, DNA, enzim gibi tüm hayatı önem taşıyan bileşiklerine etki ederler. Mitokondride gerçekleşen aerobik...
edilemezse diyabet, ateroskleroz, alzheimer, koroner kalp hastalıkları ve kanser gibi pek çok hastalığın oluşmasına zemin hazırlamaktadır (Aydemir ve Sari, 2009; Yokuş ve Çakır, 2012).


**Tablo 2. Oksidatif stres ile ilişkilendirilen durumlar (Bokov ve ark, 2004)**

<table>
<thead>
<tr>
<th>Oksidatif Stres ile İlgili Durumlar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yaşlanma</td>
</tr>
<tr>
<td>Ateroskleroz</td>
</tr>
<tr>
<td>Kardiyovasküler Hastalıklar</td>
</tr>
<tr>
<td>Kanser</td>
</tr>
<tr>
<td>Nörodejeneratif Hastalık</td>
</tr>
<tr>
<td>Katarakt</td>
</tr>
<tr>
<td>Artrit ve İnflamatuvar Hastalıklar</td>
</tr>
<tr>
<td>Diyabet</td>
</tr>
<tr>
<td>Şok, Travma ve İskemi</td>
</tr>
<tr>
<td>Pankreatit</td>
</tr>
<tr>
<td>İnflamatuvar Barsak Hastalıkları ve Kolit</td>
</tr>
<tr>
<td>Allerji</td>
</tr>
<tr>
<td>İnfeksiyonlar</td>
</tr>
</tbody>
</table>

2.3. **Antioksidanlar**

2.3.1. Endojen antioksidanlar

Kendi arasında enzimatik olanlar ve olmayanlar diye ikiye ayrılır.

2.3.1.1. Enzimatik olanlar

 Süperoksit dismutaz (SOD), glutatyon peroksidaz (GPx), katalaz (CAT), glutatyon-s-transferaz (GST), hidroksiperoksidaz, mitokondriyal sitokrom oksidaz sistemidir.

2.3.1.2. Enzimatik olmayanlar

 α-tokofe rol (E vitamini), β-karoten, askorbik asit, melatonin, ürik asit, bilirübin, glutatyon, albümin, transferrin, ferritin, seruloplasmindir.

2.3.2. Ekzojen Antioksidanlar

 Allopürrinol, oksipurinol, folik asit, C vitamini, trolox-C (E vitamini analogu), asetilsistein, mannitol, ve adenozin sayılabilir (Soyalp, 2011; Gök ve ark, 2006).

 Antioksidanlar genel olarak 4 farklı mekanizma ile oksidanları etksiz hale getirirler. Bu mekanizmalar:

 **Toplayıcı etki (Scavenging):** Antioksidanların serbest oksijen radikallerini etkileyerek onları tutma veya çok daha zayıf yeni bir molekül çevirmeye işleme toplayıcı etki denir. Bu etki, antioksidan enzimler tarafından yapılır.

 **Bastırıcı etki (Quencher):** Antioksidanların serbest oksijen radikalleriyle etkileşip onlara bir hidrojen aktararak aktivitelerini azaltan veya inaktif çekle dönüştürerek etki ederler. Bu etki, vitaminler ve flavonoidler tarafından yapılır.

 **Onarıcı etki (Repair):** Hedef molekülerin hasarlanması sonrası antioksidanlar tarafından tamir edilmesi veya temizlenmesi ile bu etki gerçekleşir.

 **Zincir kırıcı etki (Chain breaking):** Antioksidanlar, serbest oksijen radikallerini kendilerine bağlayarak zincirleri kırıp fonksiyonlarını inactive ederler. Hemoglobinin, seruloplasmin ve mineraller zincir kırıcı etki gösterirler (Young ve Woodside, 2001; Memişoğlu, 2005).
Tablo 3. Antioksidan sistemler (Bokov ve ark, 2004)

<table>
<thead>
<tr>
<th>Antioksidan Sistemler</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Endojen Antioksidanlar</strong></td>
</tr>
<tr>
<td>Bilirubin, tioller (glutatyon, lipoik asit, N-asetil sistein), NADPH ve NADH, koenzim Q10, ıvrir asit, enzimler [Cu/Zn ve Mn bağımlı süperoksid dismutaz (SOD), Fe bağlı katalaz (CAT), selenyum bağlı glutatyon peroksidaz (GSH-Px)]</td>
</tr>
<tr>
<td><strong>Diyetle Alınan Antioksidanlar</strong></td>
</tr>
<tr>
<td>Vitamin C, vitamin E, β-karoten ve diğer karotenoidler (likopen, lutein), polifenoller (flavonoidler)</td>
</tr>
<tr>
<td><strong>Metal Bağlayıcı Proteinler</strong></td>
</tr>
<tr>
<td>Albümin (Cu), seruloplazmin (Cu), metallothionein (Cu), ferritin (Fe), transferin (Fe), myoglobin (Fe)</td>
</tr>
</tbody>
</table>

2.4. MCF-7 Meme Kanseri Hücre Hattı


2.5. Hücre Ölüm Mekanizmaları

2.5.1. Apoptoz (Programlı Hücre Ölümü)


Organizmada görevini tamamlamış ya da hasara uğramış hücrelerin diğer hücrelere zarar vermemesi için ortadan kaldırıldığı, genetik olarak kontrol edilen, organizmada var olan homeostazi koruyan, aynı zamanda programlanmış hücre ölümü olarak da tanımlanır.


Sonrasında membrana çevrilmiş olan veziküler görülmeye başlanır Sürek devam ettiğçe bu veziküler, komşu hücreler ya da fagositoz tarafından fagositoz edilir. Her saniye bir milyona yakın hücremiz apoptoz sayesinde vücuttan uzaklaştırılmaktadır ve bu hücrelerin yerine yenileri yapılmaktadır. Yapım (mitoz) ile yıkım (apoptoz) arasında kontrollü bir denge vardır. Çok hücreli canlılarda homeostazi, hücre bölünmesi ve hücre ölümü arasında kurulan denge ile sağlanır. Bu dengenin apoptozun lehine ya da aleyhine kayması birçok hastalığa sebep olabilmektedir. Mekanizmanın herhangi bir noktasında meydana gelen bir

2.5.2. Nekroz


<table>
<thead>
<tr>
<th>Apotoz</th>
<th>Nekroz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hücrenin organellerinin büzülmesi ve kromatinin kondenzasyonu</td>
<td>Hücrenin şişmesi ve plazma membranının parçalanması</td>
</tr>
<tr>
<td>Hücre nin içeriğe sıçanı olmaz</td>
<td>Hücrenin içeriğe sıçanı olur</td>
</tr>
<tr>
<td>Apoptotik cisimler fagositer tarafından yutulur</td>
<td>Hücre ve çekirdekSEL lizis</td>
</tr>
<tr>
<td>Spesifik sistein proteaz, kaspaz aktivasyonu, internükleozomal DNA fragmantasyonu</td>
<td>Nekrotik hücre yoktur</td>
</tr>
<tr>
<td>Sinyal mekanizmalarıyla düzenlenir.</td>
<td>Yetersiz bir şekilde düzenlenir.</td>
</tr>
<tr>
<td>İnflamatuar yanıt neden olmaz</td>
<td>İnflamatuar yanıt neden olur</td>
</tr>
</tbody>
</table>

24
Apoptoz ve nekrozun birbirinden farklı yönleri (Hekim, 2017'den değiştirilerek alınmıştır).


**Şekil 9.** Apoptoz ve nekrozun birbirinden farklı yönleri (Hekim, 2017'den değiştirilerek alınmıştır).
BAX’ın fazla olduğu durumlarda hücre apoptoza gidecektir. Eğer BCL-2 fazla ise apoptoz inhibe edilecektir (Ersöz, 2007). Yüksek miktarda BCL-2 ifadesinin neuroblastoma, glioblastoma ve meme kanseri hücrelerinde TRAIL tarafından indüklenen apoptozu inhibe ettiği, tümünün malignite derecesini artırdığı ve birçok kanser türünde kemoterapi ilaçlarına radyoterapi oluşumuna neden olduğu gösterilmiştir (Findley ve ark, 1997).


2.5.3. Apoptozda Görülen Morfolojik Değişiklikler


2.5.4. Kaspaz Aktivasyon Mekanizması

Kaspazlar, apoptoz ve inflamasyonda görev alan korunmuş bir proteaz ailesini oluşturur. Programlanmış hücre ölümünün gerçekleşmesi için gerekli olan bir grup sistin proteazlardır. Sistin proteaz aktivitesi kökenine veya ölüm uyaranına bakılmaksızın apoptozu ugrayan tüm hücrelerde saptanabilir. İsimlerini aspartik asit rezidülerin hemen sonrasından kesmek için sistin rezidülerini kullanılarak dolaylı almışlardır (cysteine
aspartate spesific proteases). İnsanlarda 14 ayrı kaspaz bulunmaktadır ve fonksiyonlarına bağlı olarak üç alt sınıf ayrılmaktadır (Alenzi ve ark, 2010).

**Alt Sınıf I:** Apoptoz etkinleştirecek/başlatıcı kaspaz 2, 8, 9 ve 10

**Alt Sınıf II:** Apoptoz infazci/efektör kaspaz 3, 6 ve 7

**Alt Sınıf III:** Apoptoz inflamatur mediatör kaspaz 1, 4, 5, 11, 12, 13 ve 14

Çeşitli çalışmalardan elde edilen bulgulara göre apoptoz bozulması kaynaklı tümör oluşmasının tümör ilerlemesine ve tedaviye olan direnci harekete geçirdiğini göstermiştir (Edinger ve Thompson, 2004). Kanser tedavilerinde seçici olarak apoptozun tetiklenmesi önemli bir hedeftir (Call ve ark, 2008). Bu sebeple antikanser tedavilerinin klinik çalışmalarda erken apoptoz biyomarkerlarının izlenmesi önem teşkil eder.

2.6. Oleuropein


kimyasal yapı formülüne bakıldığında elenolik asit ve hidroksitriosolün heterozidik esteridir.


Zeytinyağı, değişken miktarda triaçilgliserol ve az miktarda serbest asit, gliserol, sterol, tokoferol ve fenol içeren Akdeniz diyetinin önemli bir bileşenidir. Zeytinyağının içinde bulunan oleuropeinin şekil.14’te de görüldüğü gibi antioksidan (ROS atma etkisi, LDL’nin oksidasyonunu engelleme), anti-enflamatuar (lipoksigenaz inhibisyonu), anti-atherojenik, antikanser (antimigrasyon etkisi, apoptoz indüksiyon, anjiyogenez inhibisyonu), antimikrobiyal (bakteri hücre membranı zarı), antiviral (viral kılıf etkileşimi), nöroprotektif (oksidatif stres azaltma), hepatoprotektif (karaciğer yağlanmasını azaltma) olmak üzere pek çok etkileri vardır. Tüm bu etkilerden dolayı Akdeniz ülkelerinde ticari olarak gıda takviyesi olarak mevcuttur (Visioli ve ark, 1998; Carluccio ve ark, 2003; Owen ve ark, 2000; Tripoli ve ark, 2005; Fredrickson 2000; Andreadou ve ark 2007; Andreadou ve ark 2006).
2.6.1. Oleuropeinin Antikanserojenik ve Apoptotik ve Etkisi

Doğal antimikrobiyal maddeler arasında gösterilen oleuropeinin, mikroorganizmaların gelişme hızını yavaşlattığı ve aynı zamanda inhibe ettiği bildirilmektedir. Yani daha çok antimikrobiyal etkilerinden bahsedilebilir (Yıldız ve Uylaşer, 2011).

Tablo 5. Oleuropeinin farklı kanser hücre hatlarında antitümor etkisi (Barbero ve ark, 2014).

<table>
<thead>
<tr>
<th>Hücre Hatti</th>
<th>Kanser Tipi</th>
</tr>
</thead>
<tbody>
<tr>
<td>MCF-7</td>
<td>Meme adenokarsinoma</td>
</tr>
<tr>
<td>MDA</td>
<td>Meme adenokarsinoma</td>
</tr>
<tr>
<td>T-47D</td>
<td>Meme duktal karsinoma</td>
</tr>
<tr>
<td>HT 29</td>
<td>Kolorektal adenokarsinoma</td>
</tr>
<tr>
<td>Caco-2</td>
<td>Kolorektal adenokarsinoma</td>
</tr>
<tr>
<td>LoVo</td>
<td>Kolorektal adenokarsinoma</td>
</tr>
<tr>
<td>TF 1</td>
<td>Erythroleukemia</td>
</tr>
<tr>
<td>LN 18</td>
<td>Glioblastoma</td>
</tr>
<tr>
<td>A549</td>
<td>Akciğer karsinoma</td>
</tr>
<tr>
<td>RPMI 7951</td>
<td>Melanoma</td>
</tr>
<tr>
<td>LNCaP ve DU145</td>
<td>Prostat kanseri</td>
</tr>
<tr>
<td>786-O</td>
<td>Böbrek hücresi adenokarsinoma</td>
</tr>
<tr>
<td>T-24</td>
<td>İdrar torbası karsinoma</td>
</tr>
</tbody>
</table>

2.7. Vitamin D


Temel D vitamini formları olan D₂ ve D₃ moleküllernin kimyasal yapısı şekilde gösterilmiştir.

**Şekil 15.** Vitamin D₂ ve D₃ moleküllernin kimyasal yapısı

**Şekil 16.** Ergosterolden D₂ vitamini oluşumu


**Tablo 6.** D Vitaminini ve plazmadaki metabolitleri (Burtis ve ark, 2012).

<table>
<thead>
<tr>
<th>Vitamin D</th>
<th>Konsantrasyon</th>
<th>Serbest (%)</th>
<th>Yarı ömür</th>
</tr>
</thead>
<tbody>
<tr>
<td>25-Hidroksivitamin D</td>
<td>&lt;0,2-20 ng/ml</td>
<td>-</td>
<td>1-2 gün</td>
</tr>
<tr>
<td></td>
<td>&lt;0,5-52 nmol/L</td>
<td>-</td>
<td>1-2 gün</td>
</tr>
<tr>
<td></td>
<td>&lt;10-65 ng/ml</td>
<td>0,03</td>
<td>2-3 hafta</td>
</tr>
<tr>
<td></td>
<td>&lt;25-162 nmol/L</td>
<td>0,03</td>
<td>2-3 hafta</td>
</tr>
<tr>
<td>1,25 Dihidroksivitamin D</td>
<td>&lt;15-60 ng/ml</td>
<td>0,4</td>
<td>4-6 saat</td>
</tr>
<tr>
<td></td>
<td>&lt;36-144 nmol/L</td>
<td>0,4</td>
<td>4-6 saat</td>
</tr>
</tbody>
</table>

![Şekil 18. Vitamin D metabolizması (Akbel, 2005’den değiştirilerek alınmıştır).](image)

D vitamini yetersizliğinin önemli bir sebebi güneş ışınlarından yetersiz faydalanmadır. Osteomalazide tedavi kalsiyum suplementasyonu da içermelidir. İleri derecede D vitamini eksikliği, mineralizasyon defektine neden olarak çocuklarda riketse, erişkinlerde ise osteomalaziye yol açar. İntestinal kalsiyum emiliminin azalması ve

D vitamini eksikliğinde etkili mekanizmalar ve ilişkili rahatsızlıklar Şekil 19’da görülmektedir.

**Şekil 19.** Vitamin D eksikliğinde etkili mekanizmalar ve ilişkili rahatsızlıklar (Tezcan, 2012’den değiştirilerek alınmıştır).


D vitamini, birçok hastalığın gelişmesini engellemekte veya hastalığın bulgularını hafifletmektedir. Bu hastalıklar; otoimmun hastalıklar, koroner hastalıklar, akciğer hastalıkları, alerji, osteoporoz/osteopenia, depresyon, şizofren, migren, epilepsi, diyabet, obezite, inflamatuvar bağırsak hastalığı, romatoid artrit, multipl skleroz, enfeksiyöz
hastalıklar, paraziter hastalıklar ve pek çok kanser çeşidi (prostat, meme, kolon, beyin) olarak sıralanabilir (Hollick, 2004).

2.7.1. Vitamin D’nin Antikanserojenik ve Apoptotik Etkisi


**Tablo 7.** Kalsitriolün antikanser etkisinin mekanizması (Feldman ve ark, 2014).

<table>
<thead>
<tr>
<th>Kategoriler</th>
<th>Etki Mechanizması</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Proliferasyon</strong></td>
<td>P21 ve p27 ekspresyonu artışı&lt;br&gt;CDKs, siklinler, MYC ve RB ekspresyonunun azalışı</td>
</tr>
<tr>
<td><strong>Apoptoz</strong></td>
<td>BAX artışı&lt;br&gt;BCL-2 azalışı&lt;br&gt;Radyasyon ve kemoterapi duyarlığının artışı</td>
</tr>
<tr>
<td><strong>Diferansiyyon</strong></td>
<td>Miyeloid lösemi hücrelerinin monositerle ayrılması&lt;br&gt;Kazin, lipitler, PSA, E-cadherin gibi diferansiyyon faktörlerinin ekspresyonunun artışı</td>
</tr>
<tr>
<td><strong>İnflamasyon</strong></td>
<td>COX2, PG reseptörleri, stres kinaz ve NF- Kb sinyal yolklarının ekspresyonunun inhibisyonu</td>
</tr>
<tr>
<td><strong>İnvazyon ve metastaz</strong></td>
<td>MMP9, α6 integrin, 4 integrin, plasminojen aktivatör ekspresyonunun inhibisyonu</td>
</tr>
<tr>
<td><strong>Anjiyogenez</strong></td>
<td>HIF1 α, VEGF, IL-8, tenasin C, PGE2 seviyelerinin azalışı</td>
</tr>
</tbody>
</table>
2.7.2. Vitamin D ve Meme Kanseriyle ilgili Pre-Klinik Çalışmalar

Meme de dahil olmak üzere vücuttaki çeşitli böbrek dışı dokular dolaşımdaki 25(OH)D₃ den aktif D vitamini metaboliti olan 1,25(OH)₂D'nin oluşumu için gerekli enzim olan 1-α-hidroksilazı içermektedir. Lokal olarak sentez edilen 1,25(OH)₂D, meme epitelinde bulunan VDR reseptörüne bağlanarak birçok genin ekspresyonunu düzenler. Dolayısıyla pek çok çalışmada ve in vitro hayvan modellerinde D vitamininin meme karsinogenezü üzerine etkileri incelendiğinde D vitamininin koruyucu bir rolü olduğu görülmektedir (Zehnder ve ark, 2001).

2.7.3. Vitamin D ve Hücre Büyümeyesinin Durması ile İlişkisi

1,25(OH)₂D'nin MCF-7 hücre hattında sikline bağımlı kinaz inhibitörleri olan p21 ve p27 ekspresyonunu artırmak hücre döngüsünün durmasını indüklediği ifade edilmiştir (Jensen ve ark, 2001; Simboli-Campbell ve ark, 1997). Ayrıca aktif D vitamini metaboliti, c-myc ve c-fos gibi onkogenlerin ekspresyonu ve çeşitli büyüme faktörlerini içeren epidermal büyümey faktörü, dönüştürücü büyüme faktörü, insulin benzeri büyümey faktörünün (IGF-1) etkilerini düzenler (Colston ve Hansen, 2002).

2.7.4. Vitamin D ve İnvasyon ve Metastazın İnhibisyonuna Etkisi


2.7.5. Vitamin D ve Anti-İnflamasyon Etkisi

Meme kanseri hücreleri ya da onları çevreleyen dokulardan salınan prostoglandinler, hücre çoğalmasını ve apoptoz direncini teşvik ederek tümör hücrelerinin invazyon ve anjiyogenezini uyararak tümör ilerlemesini teşvik eder. 1,25(OH)₂D’nin insan meme kanseri
hücre hatlarında prostoglandin sentezinde önemli bir rol oynayan siklooksijenaz 2 (COX-2) ekspresyonunu azaltarak düzene soktuğu bildirilmiştir (Krishnan ve ark, 2010).

2.7.6. Vitamin D ve Östrojen Yolağı İhibisyonu

1,25(OH)D, androjeni östrojene çeviren aromataz enzimini kodlayan gen ekspresyonunu azaltarak östrojen yoluunu baskılar. Aynı zamanda 1,25(OH)D östrojenin aktivitelerine aracılık eden nükleer östrojen reseptörünü azaltır (Krishnan ve ark, 2010).

2.7.7. Vitamin D ve Epidemiyolojik Çalışmalar

Meme kanseri ve vitamin D arasındaki ilişkiye dair yapılan ilk epidemiyolojik çalışmalar güneş ışığına maruz kalma ile meme kanseri insidansı ve mortalite arasında güçlü, anlamlı, ters ilişkiler olduğunu göstermiştir (Shao ve ark, 2012). Farklı ülkelerde, yaz veya sonbaharda teşhis alan ve tedaviye başlanılan meme kanseri hastalarında prognozun daha iyi olduğu gösteren çalışmaları mevcuttur. Özellikle Garland ve arkadaşları tarafından ABD eyaletlerinde yapılan bir çalışmada düşük güneş ışığına maruz kalma oranı ve yaşa göre düzeltilmiş meme kanseri oranları arasında, Güney Batı bölgesi ile kıyaslayacak olursak Kuzey Doğu bölgesinde daha yüksek oranlarda bulunmasından dolayı güçlü korelasyonlar olduğunu göstermektedir (Garland ve ark, 1990).

İlk Ulusal Sağlık ve Beslenme ve İnceleme Taraması (NHANES) dahilinde 5009 beyaz kadın, vitamin D’ye maruz kalmalarını ölçmek için 17 yıl boyunca yüz yüze görüşme ve dermatolojik muayeneler ile retrospektif kohort çalışmaına katıldıkları Güneş ışığına daha fazla maruz kaldığını belirten kadınlar, hiç veya az güneş ışığına maruz kalmuş kadınların  ilekiyaslandığında %33 daha az meme kanseri riski taşındıkları gözlemленmişti. Bu sonuçla göre güneş ışığına maruz kalmanın meme kanseri üzerindeki etkisi kabul edilebilir düzeyde olduğu anlaşılmıştır. (Robshahm ve ark, 2004).
3. GEREÇ VE YÖNTEM

3.1. Kullanılan Malzemeler

Çalışmada kullanılan MCF-7 hücre hatları ADÜ BİLTEM’den temin edilmiştir. Ticari olarak üretilmiş hücre hatları olduğu için herhangi bir etik kurul onayı gerekmektedir.

Tablo 8. Çalışmada kullanılan hücre tipi ve hücrenin özellikleri

<table>
<thead>
<tr>
<th>ATTCC® kodu</th>
<th>HTB-22™</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adı</td>
<td>MCF7</td>
</tr>
<tr>
<td>Büyüme özelliği</td>
<td>Adherent (yapışan)</td>
</tr>
<tr>
<td>Organizma</td>
<td>Homo sapiens (insan)</td>
</tr>
<tr>
<td>Morfoloji</td>
<td>Epitelyal</td>
</tr>
</tbody>
</table>
| Kaynak       | Organ: Meme
              | Hücre tipi: Meme adenokarsinoma |

Tablo 9. Çalışmada kullanılan kimyasallar ve sarflar

<table>
<thead>
<tr>
<th>Ürün</th>
<th>Ürün Kodu</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fetal Bovine Serum, 100 ml</td>
<td>10270098</td>
<td>THERMO</td>
</tr>
<tr>
<td>DMSO for cell culture reagent, 100 ml</td>
<td>sc-358801</td>
<td>SANTACRUZ</td>
</tr>
<tr>
<td>L-glutamine, 200mM, 100ml</td>
<td>GLN-B</td>
<td>CAPRICORN</td>
</tr>
<tr>
<td>Tripisin-EDTA(%0,25), 1X, 100 ml</td>
<td>THERMO</td>
<td>2520056</td>
</tr>
<tr>
<td>Tyrgan Blue Solution 100 ml for cell culture</td>
<td>1475</td>
<td>NEOFROXX</td>
</tr>
<tr>
<td>DMEM High Glucose, 500 ml</td>
<td>DMEM-HA</td>
<td>CAPRICORN</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate Bufer Saline (DPBS) 500 ml</td>
<td>D-8537</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Penisilin Streptomycin, 100ml</td>
<td>PS-1</td>
<td>CAPRICORN</td>
</tr>
<tr>
<td>MCF-7 Hücre Dizisi</td>
<td></td>
<td>ADÜ-BİLTEM</td>
</tr>
<tr>
<td>96-well plate for cell culture U taban, 50 adet AMB</td>
<td>SCP-11-096</td>
<td>SORFA</td>
</tr>
<tr>
<td>24-well plate for cell culture, 50 adet AMB</td>
<td>SCP-11-096</td>
<td>SORFA</td>
</tr>
<tr>
<td>Serologic pipet 5ml, tek kullanımlık 200 adet/AMB</td>
<td>P8050</td>
<td>SORFA</td>
</tr>
<tr>
<td>Serologic pipet 10 ml, tek kullanımlık 200 adet/AMB</td>
<td>P8100</td>
<td>SORFA</td>
</tr>
<tr>
<td>T75 Cell Culture Flask (75cm2) 25 adet AMB</td>
<td>833911002</td>
<td>SARSTEDT</td>
</tr>
<tr>
<td>15 ml Centrifuge Tube kapaklı</td>
<td></td>
<td>Orange Scientific</td>
</tr>
<tr>
<td>50 ml Centrifuge Tube kapaklı</td>
<td></td>
<td>Orange Scientific</td>
</tr>
<tr>
<td>1,5 ml Eppendorf tüp kapaklı</td>
<td></td>
<td>SSIBIO</td>
</tr>
<tr>
<td>Petri dish, PP, 100 mm çap</td>
<td></td>
<td>Orange Scientific</td>
</tr>
<tr>
<td>Petri dish, PP, 60 mm çap</td>
<td>4450200N</td>
<td>Orange Scientific</td>
</tr>
<tr>
<td>Pipet Ucu 1-200 µL</td>
<td>4230N</td>
<td>SSIBIO</td>
</tr>
<tr>
<td>Pipet Ucu 100-1000 µL</td>
<td>4330N</td>
<td>SSIBIO</td>
</tr>
<tr>
<td>WST-1 Cell Proliferation Kiti</td>
<td>15092</td>
<td>INTRONBIO</td>
</tr>
<tr>
<td>Total Antioksidan Status Kiti</td>
<td>AT15053A</td>
<td>REL DIAGNOSTIC</td>
</tr>
<tr>
<td>Total Oksidan Status Kiti</td>
<td>SR15061O</td>
<td>REL DIAGNOSTIC</td>
</tr>
<tr>
<td>Muse®/Annexin V and Dead Cell Assay Kit</td>
<td>MCH100105</td>
<td>MILLIPORE</td>
</tr>
</tbody>
</table>
Tablo 9. Çalışmada kullanılan kimyasallar ve sarflar (devamı)

<table>
<thead>
<tr>
<th>Ürün</th>
<th>Ürün Kodu</th>
<th>Firma</th>
</tr>
</thead>
<tbody>
<tr>
<td>Muse® Caspase-3/7 Assay Kit 100 test</td>
<td>MCH100108</td>
<td>MILLIPORE</td>
</tr>
<tr>
<td>BCA Protein Assay Kit</td>
<td>21071</td>
<td>INTRONBIO</td>
</tr>
<tr>
<td>1,25-Dihydroxyvitamin D₃ 10µg</td>
<td>D1530-10UG</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Oleuropein 10mg</td>
<td>92167-10UG</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Superoksit Dismutase from Bovine Liver</td>
<td>S-1860-15KU</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Xanthine Oxidase from Bovine Milk</td>
<td>X1875-5U</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>NBT (Nitroblue tetrazolium chloride)</td>
<td>N6639-50MG</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>BSA (Bovine Serum Albumin)</td>
<td>ALB001</td>
<td>BIOSHOP</td>
</tr>
<tr>
<td>Glutathione Reductase from Baker’s Yeast</td>
<td>G3664-500U</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Glutathione Free Acid (L-Glutathione reduced)</td>
<td>G4251-5G</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>RIPA Lysis Buffer System</td>
<td>sc-24948</td>
<td>SANTACRUZ</td>
</tr>
<tr>
<td>Proteaz İnhibitorü</td>
<td>P2714-1TB</td>
<td>SIGMA-ALDRICH</td>
</tr>
<tr>
<td>Serolojik Pipet Tabancası</td>
<td>PA-100</td>
<td>CAPP</td>
</tr>
<tr>
<td>Cryogenic Vial</td>
<td>4420</td>
<td>AXYGEN</td>
</tr>
<tr>
<td>Dört yönlü Çalışma Rack (1,5 ml-5 ml-15 ml-50 ml) tüp sporu</td>
<td>HS29022A</td>
<td>VWR</td>
</tr>
<tr>
<td>Cell Scraper</td>
<td>3010</td>
<td>COSTAR</td>
</tr>
<tr>
<td>Xanthine SIX7375-10G</td>
<td>X7375</td>
<td>SIGMA</td>
</tr>
</tbody>
</table>

3.2. Kullanılan Cihazlar

İnkübatör, Nuaire (NU 5500, Plymouth, ABD)

Biyogüvenlik Kabini (2.seviye), Heraeus (HS12, Hanau, Almanya)

İnvert Mikroskop (Olympus CK40, Tokyo, Japonya)

UV-Visible Multiskan Spektrofotometre (Diagnostik Automation Inc, Los Angeles, ABD)

UV-Visible Multiskan Spektrofotometre, Thermo Multiskan (FC-SN: 35700535, Finlandiya)

Soğutmalı Santrifüj (15 ml falkon için) (Hettich D78532, Tuttlingen, Almanya)

Soğutmalı Santrifüj (eppendorf için) (Eppendorf 5415R, Hamburg, Almanya)

Mikroplate Shaker (ısıtmalı), (Eksper HT, İzmir, Türkiye)

Mikroplate Yıkayıcı (Eksper, İzmir, Türkiye)

EVE™ Otomatik Hücre Sayım Cihazı (NanoEnTek, Seuol, Güney Kore)
-80 °C Dondurucu (Nüve NF, 190, Ankara, Türkiye)

-20 °C Dondurucu (Uğur, Türkiye)

pH Metre (Hanna İnstrument HI 221, Woonsocket, USA)

Hassas Terazi, KERN (ABJ220-4NM, Almanya)

MuseTM Cell analyzer and analyses software (Merc Millipore, Almanya).

3.3. Kullanılan Çözeltiler

Bir litre için DPBS (Dulbecco’s Phosphate Buffer Saline) tamponu hazırlanması:

Stok: 10 L (9,55 g)

500 ml için 0,4775 g tartılıp üzerine distile su ile tamamlandı.

Hazırlanan DPBS’ nin pH’i, pH metre cihazı (WTW 340, Almanya) ile kontrol edilerek pH 7,0 olduğu tespit edildi. Daha sonra bu DPBS otoklavda 121 °C’de 15 dakika steril edildi.

3.4. Deney Düzeneginin Oluşturulması

3.4.1. Hücrelerin Çözüürülmesi

Çalışmanın tüm aşamaları laminar-hava akışlı kabin içerisinde gerçekleştirildi. Önceden dondurulmuş olan MCF-7 adherent hücreleri çalışırmak üzere sıvı azottan çıkarıldı ve kültür ortamına uygun prosedürleri takip edildi. Bunun için öncelikle su banyosu 37 °C’ye ısıtıldı, komplet hücre kültür ortamının ısısının su banyosunda 37 °C’ye gelmesi sağlanıdı. Hücreler sıvı azot tankından, -196 °C’den çıkarılır çıkarılmaz 37 °C’lik su banyosunda hızla çözüldü. Bu işlem yapılırken hücrelerin bulunduğunu tüm tamamen suya batırmamasına dikkat edilir. Hücreler çözüldükten sonra tüp kapağı %70’lik alkol ile silindi. 15 ml’lik santrifüj tüpüne aktarılıp üzerine 5 ml 37 °C’de ısıtılmış taze besiyeri yavaşça eklendi ve ağzı sıkça kapatıldı. 400 rpm’de 10 dakika santrifüj edildi (Russo ve ark., 1977). Süpernatant pipetle aspire edildi ve atıldı. Çöken hücre pelleti üzerine 5 ml yeni ortam besiyeri eklendi ve pipetaj ile hücreler iyice süspanse edildi. 25 cm²’lik flasklara

**Resim 1. İnkübasyon işlemi**

**3.4.2. Hücrelerin Pasajlanması**

Hücreler düzenli olarak belirli aralıklarla invert mikroskopta (Olympus, Tokyo, Japonya) incelendi. Hücrelerin morfolojisine bakıldı ve ve sayısı tespit edildi. Hücrelerin durumu göz önünde bulundurularak ortalama 2 günlük aralıklarla pasaji yapıldı. %5 CO₂’li inkübatörden çıkarılan hücre kültür flaskları biyolojik güvenlik kabinine alındı. Eski medium aspire edilerek atıldı. Hücrelerin flask dibinden kaldırılması için % 0,25’lik tripsin-EDTA solüsyonundan 1 ml eklendi ve 1 dk kadar 37°C’de inkübatörde bekletildi. Mikroskopta yuvarlak hale gelen hücrelerin tutumlayıp bırakıp kaymaya başladığı gözlemlendiği anda taze hızın 5 kat yani 1 ml tripsin için en az 5 ml medium eklenerek tripsinin etkisi inhibe edildi. Hücre kültür flaslardaki tripsinli ve kalkan hücreli medium pastör
pipeti ile pipetaj yapılarak konik tabanlı santrifüj tüplerine aktarıldı. 1100 rpm (200g)’de 5 dakika santrifüj edildi (Russo ve ark, 1977). Süpernatant atılmış pellet hücre yükama çözeltisi (DPBS, Ca⁺² ve Mg⁺² negatif) ile yıkandı. Tekrar santrifüj edildi. Pellet oda sıcaklığına getirilen, 4 ml hücre mediumu ile süspanse edildi. Bu süspansiyondan 1’er ml; 11’er ml taze besiyeri içeren 75 cm²’lik hücre kültür flasklarına eklendi. İnvert mikroskop ile hücreler kontrol edildi. Hücre kültür flaskları üzerine pasaj sayısı ve tarih yazılıarak, 37°C’de %5 CO₂’li inkubatöre kaldırıldı.

Resim 2. MCF-7 hücre hattının çoğaltıılması

3.4.3. Hücrelerin Sayılması ve Canlılık Kontrolü

Her pasaj işleminde hücrelerin canlılığı tripan mavisi boyası (Neofroxx, Seul, G.Kore) ile kontrol edildi. Lam üzerine 10µl hücre süspansiyonu ve 10µl tripan mavisi koyularak karıştırdılar (Fogaça ve ark, 2017). Arthur™ Automated Cell Counter, NanoEnTek hücre sayım cihazı kullanılarak hücreler otomatik olarak sayıldı ve canlı hücrelerin (boya almayan hücrelerin) yüzde oranı hesaplandı. Hücre sayım cihazı 1 ml’de ne kadar hücre olduğunu ve hücre canlılık yüzdesini otomatik olarak hesapladığı için cihazdaki veriler 3 tekrarlı olarak ölçülen ortalaması alındı (Automated ve Counter n.d). Thoma lamında sayılanın de şu yol izlendi. Thoma lamında 16 büyük kare ve bu büyük karelerin içerisinde 16 küçük kare bulunmaktadır. Tüm bu karelerdeki hücreler sayıldığında 0,1 mm³ deki hücre sayısı bulunmuş olur. Çünkü Thoma lamının esası, 0,1 mm³ hacimde sayım yapılmasına
dayanır. 1 ml'deki hücre sayısını bulmak ve standart sonuç için 0,1 mm\(^3\) hacimdeki sayım sonucunun 10.000 ile çarpılmasıerek meydana gelmektedir. 1 ml'deki hücre sayısı=16 büyük karedeki hücre sayısı \(\times 2 \times 10000\) formülü ile hesaplandığı. İki ile çarpılması sebebi % 2’lik formol- DPBS çözeltisi ile hücre kültürünün eşit miktarda karştırılmasından dolayıdır.

**Resim 3.** Hücrelerin canlılık kontrolü

![Resim 3. Hücrelerin canlılık kontrolü](image)

**Resim 4.** Hücrelerin invert mikroskopta görünümü (40X)
3.4.4. Hücrelerin Dondurulması

Hücre Dondurma Besiyerinin Hazırlanması

%10’lük FBS içeren besiyerindeki hücreler için 10 ml stok hazırlamak için;

1 ml FBS

8 ml DMEM besiyeri

1 ml DMSO (dimetilsülfoksoksit) reaktifleri karıştırılarak hazırlandı.

Hücreler pasajlanırken, 2. ve 5. pasaj sayısı aralığında bazı hücrelerin pasaji devam ettirilirken, bir kısım hücre ileri çalışmalarında tekrar kullanılması amacıyla dondurup saklandı.

3.4.5. MCF-7 Hücreleri İçin Complete Medium Hazırlanması

İlk önce ticari olarak satın alınan 500 ml DMEM besiyerinin üzerine, %10 oranında inaktive edilmiş steril fetal bovine serumdan (FBS) (Biological Industries) 50 ml eklendi.

Sonra 50 ml’lik falkonlara bölündü.

50 ml’lik falkonlara 500 µl penisilin-streptomisin ve 50 µl siprofloksasin eklendi.

Kullanılınca kadar +4°C’de saklandığı.

3.4.6. MCF-7 Hücrelerinin Kullanımı

MCF-7 hücreleri, in vitro meme kanser çalışmalarında oldukça fazla tercih edilen bir hücre hattıdır. MCF-7 hücreleri, hücre sitoplazmasında östrojeni östradiyol olarak işlemektedir. Bu özelliği, MCF-7 hücrelerini östrojen pozitif reseptör yapmaktadır. Buna ilaveten, MCF-7 hücrelerinin in vitro üretiminde hücreler, epitel hücrelere benzeyen tek tabaka halinde ürerler (Resim 4).

3.4.7. Oleuropein Dozunun Belirlenmesi

Ticari olarak gelen oleuropein (Sigma-92167-10UG), steril serum fizyolojik (SF) içinde çözülerek 18.500 µM konsantrasyonda ana stok hazırlanmıştır. Literatür bilgisine dayanarak oleuropein için uygulanacak uygun doz belirlenmeye çalışıldı. Ayrıca oleuropein uygulaması için uygun dozun belirlenmesi amacıyla 96 kuyucuklu plaga eşit sayıda hücreler konuldu. Ardından hücre 24 saatlik ölçüm için kontrol, 12,5, 25, 50, 100, 200, 400, 600, 800, 1000, 1200, 1600 µM konsantrasyonlarda oleuropein, hücre medyumlarına katıldı ve hücreler inkübe edildi. 48 saatlik ölçüm için kontrol, 9,4, 18,75, 37,5, 75, 150, 300, 400, 600, 800, 1000, 1200 µM konsantrasyonlarda oleuropein, hücre medyumlarına katıldı. 72 saatlik ölçüm için 6,25, 12,5, 25, 50, 100, 200, 300, 400, 500, 600, 800 µM konsantrasyonlarda oleuropein, hücre medyumlarına katıldı. 24 saatlik inkübasyon sürelerinin ardından tetrazolium tuzu (WST-1) analiz yöntemi ile hücre viabilitesi (sitotoksisite durumu) değerlendirildi. Oleuropeinden hazırlanan ana stok, +4°C’de saklanmıştır. Deneyde kullanılan oleuropein konsantrasyonları da her deney tekrarında taze hazırlananak kullanılmuştur.
3.4.8. Vitamin D Dozunun Belirlenmesi

Ticari olarak gelen vitamin D (Sigma-D1530-10UG), öncelikle dimetilsülfoksit (DMSO; Sigma) içinde çözüldükten sonra 1000 µM konsantrasyonda ana stok hazırlanmıştır. Literatür bilgisine dayanarak vitamin D için uygulanacak uygun doz belirlenmeye çalışıldı. Ayrıca vitamin D uygulaması için uygun dos dozun belirlenmesi amacıyla 96 kuyucuklu plaga eşit sayıda hücreler konuldu. Ayrıca vitamin D uygulaması için uygun dozun belirlenmesi amacıyla 96 kuyucuklu plaga eşit sayıda hücreler konuldu. Daha sonra bu stok, kültür medyumu ile çeşitli seyreltme işlemlerini yapılarak 24 saatlik ölçüm için 1,95, 3,906, 7,8125, 15,62, 31,25, 62,5, 125, 250, 500, 1000 nM, 48 ve 72 saatlik ölçüm için ise 0,975, 1,95, 3,906, 7,8125, 15,62, 31,25, 62,5, 125, 250, 500, 1000 nM vitamin D konsantrasyonları hazırlanmıştır. Hücre medyumlarına katıldı ve hücreler inkübe edildi. Bu uygulanan dozlarda anlamli bir sonuç çıkmayınca 24, 48 ve 72 saatlik ölçüm için 0,25, 0,5, 1, 2, 3, 4, 6, 8, 12 µM vitamin D konsantrasyonları hazırlanıdır. Hücre medyumlarına katıldı ve hücreler inkübe edildi. 24, 48 ve 72 saatlik inkübasyon sürelerinin ardından tetrazolium tuzu (WST-1) analiz yöntemi ile hücre viabolitesi (sitotoksisite durumu) değerlendirildi. En yüksek vitamin D konsantrasyonunda, DMSO oranı % 0.1 olduğu için, kontrol grubuna besiye içinde % 0.1 oranında DMSO uygulanmıştır. D vitamininden hazırlanan ana stok, -20 °C’de saklanmıştır. Deneyde kullanılan vitamin D konsantrasyonları da her deney tekrarında taze hazırlanarak kullanılmıştır.

Resim 6. Oleuropein ve vitamin D için doz hesaplamaları
3.4.9. Hücre Proliferasyon Analizi


3.4.9.1. WST-1 Testi (Water Soluble Tetrazolium Test)

WST-1 testi, sitotoksik etki ve metabolik aktivitenin belirlenmesi için yapılan, canlı hücrelerden tetrazolium tuzlarının ayrıştırılmasına dayanan non-radyoaktif, spektrofotometrik, kolorimetrik bir testtir. WST-1 bir tetrazolium tuzu olup, canlı hücrelerin mitokondrilerinde süksinat-dehidrogenaz enzime spesifik olarak bağlanır ve suda çözünmeyen formazan tuzları oluşturur. WST-1 yönteminde spektrofotometrik olarak ölçülen absorbans değer, kültürdeki hücrelerin metabolik aktivitelerini gösterir. Bu değer, yaşayan hücre sayıısı ile ilişkilidir. Proliferasyon arttıkça, formazon tuzu oluşumuna bağlı olarak absorbans değeri de artış gösterir (Carmicheal ve ark, 1987; Lian ve ark, 2003). Yapılabilecek olan bu test ile oleuropeinin, vitamin D’nin sitotoksik etkisinin olup olmadığı belirlenmeye çalışıldı. Kontrol grubu ile kıyaslándose %50 oranında sitotoksik etki gösteren konsantrasyon, sitotoksik doz olarak kabul edildi. Oleuropein ve vitamin D’nin MCF-7 hücre hattı üzerindeki olası sitotoksik etkisi WST-1 kit ile üretici firmanın (İntron, 15092) kullanım talimatına göre uygulandı.

Kit İçeriği;

WST-1 ayrıcısı (5 ml)

Electro Connecting Solution (ECS) 500 µl

WST-1 ayrıcısı dondurularak karanlıkta saklandı.
Çalışılacak test sayısına göre 10:1 oranında WST-1 ayırıcı ve electro connecting solution (ECS) hazırlanıdı.

**Yapılış Yöntemi;**


48 saatlik inkübasyondan sonra serum fizyolojik (SF) ile çözülen oleuropein ve DMSO ile çözülen vitamin D stok solüsyonundan hücre kültür besiyeri içinde gerekli seyrelmeler yapılır uygun oleuropein konsantrasyonları ve vitamin D konsantrasyonları hazırlanıdı. Daha sonra plakların içindeki eski besiyeri atılıtdı ve kuyucuklara 100’er µl taze olarak kültür besiyerinde hazırlanıdı oleuropein ve vitamin D dozları uygulandı. Ardından plaklar 24, 48 ve 72 saatlik inkübasyonlara bırakıldı. İnkübasyon süreleri sonunda her bir 96’lık kuyucuktaki hücreler üzerine, WST-1 kit (intron) talimatlarına göre 10 µL WST-1 reaktifi ilave edildi. WST-1 reaktifi, 1 ml WST-1 ayırıcına 100 µl Electro Connecting Solution (ECTS) eklenerek hazırlanıdı. Daha sonra hücreler 2 saat inkübâtörde inkübe edilip, 450 nm dalga boyunda, referans dalga boyu 620 nm alınarak ELİZA (Enzyme-linked immunosorbent assay) cihazında okutuldu. Deneyler birbirinden bağımsız 3 tekrar olarak çalışıldı. Renk oluşumu esasına göre alınan absorbans değerleri, hücre canlılığı ile direkt olarak ilişkilendirilmiştir.
Resim 7. Hücrelerin 96’lı plaklara ekimi

3.4.10. Apoptotik Analizler


Şekil 20. Apoptoz değerlendirmesi, sağlıklı ve işaretli apoptotik hücreler (Güleş ve Eren, 2008).
3.4.10.1. Anneksin V testi


Anneksin V testinin uygulanmasından 48 saat önce, MCF-7 hücreleri yeterince çoğunlukta hücre sayını yapılırak, hücreler 6 kuyuculu plaklara her bir kuyucuktaki 50000 hücre olacak şekilde besiyeri ortamında (50000 hücre ile 2 ml medyum hazırlanmıştır) kuyulara ekimi yapıldı. Mikroplak 48 saat 37°C’de %5 CO₂ ayarlı inklübatörde bekletilerek hücrelerin yüzeye yapışmaları sağlandı. 48 saat sonunda plakların içindeki eski besiyeri atıldı ve serum fizyolojik (SF) ile çözülerek hazırlanmış olan oleuropein ve DMSO ile çözülerek hazırlanmış olan vitamin D stok solüsyonundan hücre kültür besiyerisi içinde gerekliseyetlilerin yapılırak WST-1 testi ile oleuropein için 48. saatte bulunan bulunan IC50 değeri (247,5 µM), vitamin D için bulunan IC50 değeri (2,053 µM) ve oleuropein ve vitamin D kombinasyonlarının IC50 (495 µM+4,106 µM) değerleri 6’lı plaklara 2’er ml ekildi. Ardından plaklar 48 saatlik inklübatasyona bırakıldı. İnklübatyon süreleri sonunda her bir 6’lı kuyucuktaki hücre+besiyeri falkonlara aktarıldı. Boşalan 6’lı plakların üzerine hücreler kalsın diye 1’er ml tripsin eklen-di ve 3-4 dakika etüvde bekletildi. Sonra plakların üzerine 2’er ml taze besiyeri eklenedi. Taze besiyerinin içindeki FBS tripsini inaktive eder. Sonra plakların üzerindeki 2’er ml taze besiyeri+hücreyi de aynı falkonlara eklenedi. Falconlar 1600 rpm’de 5 dakika santrifüj edildi. Üzerindeki süpermatant atıldı. 1’er ml DPBS ile yıkandı. Aynı işlem hücre yoğunluğunun biraz daha azalması için 3 kez tekrarlandı. Üçüncü işlemede hücreler %1 FBS içeren DPBS ile yıkandı. En son hücre+besiyeri kontrol, oleuropein, vitamin D ve oleuropein-vitamin D kombinasyonu olmak üzere 4 adet eppendorfa eklenedi. Anneksin V (MCH100105) kiti prosedürüyle muse cihazında okutuldu. Sonuçlar yüzde oran (%) olarak değerlendirildi.

Kit İçeriği;

Muse™ Anneksin V Ölü Hücre Reaktifi (Part No. 4700-1485, 100 tests/bottle)
Yapılış Yöntemi;

Okunacak olan her ependorf'a öncelikle 100 µl Anneksin V ölü hücre reaktifinden eklendi.

 Ardından her üzerine sırasıyla kontrol, oleuropein, vitamin D ve oleuropein-vitamin D kombinasyonundan 100’er µl hücre eklendi.

20 dakika oda sıcaklığında inkübasyona bırakıldı. Muse® cell analyzer cihazında okutuldu.

3.4.10.2. Kaspaz-3/7 testi


Kaspaz 3/7 testinin uygulanmasından 48 saat önce, MCF-7 hücreleri yeterince çoğalınca hücre sayımı yapılarak, hücreler 6 kuyucuklu plaklara her bir kuyucukta 50000 hücre olacak şekilde besiyeri ortamında (50000 hücre ile 2 ml medyum hazırlanı) kuyulara ekimi yapıldı. Mikroplak 48 saat 37°C'de %5 CO₂ uyarlı inkübátörde bekletildi. 48 saat sonunda plakların içindeki eski besiyeri atıldı ve serum fizyolojik (SF) ile çözülecek hazırlanmış olan oleuropein ve DMSO ile çözülen hazırlanmış olan vitamin D stok solüsyonundan hücre kültür besiyerinde gerekli seyreltmeler yapılarak WST-1 testi ile oleuropein 48. saatte bulunan IC50 değeri (247,5 µM), vitamin D için bulunan IC50 değeri (2,053 µM) ve oleuropein ve vitamin D kombinasyonlarının IC50 (495 µM+4,106 µM) değerleri 6’lı plaklara 2’er ml ekildi. Ardından plaklar 48 saatlik inkübasyona bırakıldı. İnkübasyon süreleri sonunda her bir 6’lı kuyucukta hücre+besiyeri falkonlara aktarıldı. Boşalan 6’lı plakların üzerine hücreler kalkınca diye 1’er ml tripsin ekleni ve 3-4 dakika etüvde bekletildi. Sonra plakların üzerine 2’er ml taze besiyeri ekleni. Taze besiyerinin içindeki FBS tripsini inaktive eder. Sonra plakların üzerindeki 2’er ml taze besiyeri+hücreyi de aynı falkonlara eklendi. Falkonlar 1600 rpm’den 5 dakika santrifüj edildi. Üzerindeki süpernatant atıldı. 1’er ml DPBS ile yıkandı. Aynı işlem hücre yoğunluğunun biraz daha azalması için 3 kez
tekrarlandı. Üçüncü işlemde hücreler %1 FBS içeren DPBS ile yıkandı. En son hücre+besiyeri kontrol, oleuropein, vitamin D ve oleuropein-vitamin D kombinasyonu olmak üzere 4 adet ependorfa eklendi. Kaspaz 3/7 (MCH100108) kiti prosedürüyle muse cihazında okutuldu. Sonuçlar yüzde oran (%) olarak değerlendirildi.

Kit İçeriği;

Muse® Caspase 3/7 Reaktifi (Part No. 4700-1505, 100 tests/vial)

Muse® Caspase 7-AAD (Part No. 4700-1510, 100 tests/vial)

1X Assay Buffer BA (Part No. 4700-1360, 100 tests/vial)

1X PBS (Part No. 4700-1515, 100 tests/vial)

Yapılış Yöntemi;

Muse® caspase 3/7 working solution elde etmek için caspase 3/7 reaktifi 1X PBS ile 1:8 oranında dilüe edildi.

Sonra Muse® Caspase 7-AAD working solution elde etmek için 2 µl 7-AAD reaktifine 148 µl 1X Assay Buffer BA eklendi.

Okunacak olan her ependorfa öncelikle 5 µl Muse® caspase 3/7 working solution ve sırasıyla kontrol, oleuropein, vitamin D ve oleuropein-vitamin D kombinasyonundan 50’er µl hücre eklenildi.

37 °C’de 30 dakika inkübasyona bırakıldı. Sonrasında 150 µl 7-AAD working solution eklendi. Muse® cell analyzer cihazında okutuldu.
Resim 8. Hücrelerin 6’lı plaklara ekimi

Resim 9. Hücrelere IC50 dozlarının verilmesi
3.4.11. Biyokimyasal Analizler

Biyokimyasal parametrelerin uygulanmasından 48 saat önce, MCF-7 hücreleri yeterince çoğalınca hücre sayımı yapılırak, hücreler 25’lik flasklara her bir flaskta 300000 hücre olacak şekilde besiyeri ortamında (3000000 hücre ile 5 ml medyum hazırlanı) 25’lik flasklara hücre ekimi yapıldı.
Resim 12. 25’lik flasklara hücre ekimi

Daha sonra 25’lik flasklar 48 saat 37°C’de %5 CO₂ ayarlı inkübatörde bekletilerek hücrelerin yüzeye yapışmaları sağlandı. 48 saat sonunda plakların içindeki eski besiyeri atıldı ve serum fizyolojik (SF) ile çözülen örnek hazırlanan olan oleuropein ve DMSO ile çözülen örnek hazırlanmış olan vitamin D stok solüsyonundan hücre kültür besiyerinde yaklaşık olarak gerekli seyretmeler yapılarak WST-1 testi ile oleuropein 48. saatte bulunan bulunan IC50 değeri (247,5 µM), vitamin D için bulunan IC50 değeri (2,053 µM) ve oleuropein ve vitamin D kombinasyonlarının IC50 (495 µM+4,106 µM) değerleri olmak üzere 4 adet 25’lik flasklara 5’er ml ekildi.

3.4.12. BCA Protein, SOD, GPx, MDA ve NO Analizleri için Hücrelerden Lizat Eldesi

Her 25’lik flask içindeki kullanılmış ortam (medium ve ilaçlı medium) aspire edildi ve atık kabına atıldı. Önceden hazırlanmış olan -20°C’de hafif buzlu DPBS’den her bir flaska 5 ml hacimde ilave edildi. Daha sonra cell scraper (steril hücre kazıyıcı) ile flask içinde başlangıç noktası belirlenerek sağa sola sadece el bileği hareket ettirilerek tabandaki yapışmış olan hücreler kazınarak kaldırıldı. Kazınarak kaldırılmış hücreler 15 ml’lik falkon tüplere aktarıldı. Falkonlara aktarma işlemi bitinceye kadar falkon tüpler soğuk zemin buz üzerine tutuldu. Aktarma işlemi bitince hiç beklemeden soğutmalı santrifüjde (+4°C) 1600 rpm 6 dakika boyunca santrifüj edilerek çöktürme işlemi gerçekleştirilirdi. Sonrasında 1 ml DPBS ile hücreler iyice homojen olsun diye iyice pipetaj yapılarak yıkandı ve tekrar 1600

Resim 13. Hücreslerin cell scraper ile kaldırılması

**RIPA Lysis Buffer hazırlama;**

İçerik;

**VIAL 1:** 1 x Lysis Buffer: % 1 Nonidet P-40, % 0,5 sodium deoxycholate,
% 0,1 SDS, % 0,004 sodium azide

**VIAL 2:** PMSF DMSO içinde çözüldü.

**VIAL 3:** Protease inhibitor cocktail DMSO içinde çözüldü.

**VIAL 4:** Sodium orthovanadate distile su içinde çözüldü.

Kullanımı;

RIPA lysis buffer karışıımının her 1 ml’si için 10 µl PMSF solution, 10 µl sodium orthovanadate ve 10-20 µl protease inhibitor cocktail solution olacak şekilde hazırlanıdı.
3.4.12.1. Total protein tayini

Lizatlardaki SOD, GPx, MDA ve NO sonuçları protein değerine göre hesaplanacağınından, lizatlardaki protein düzeyi ölçülmüştür.

Total proteinin kolorimetrik tespiti ve nicelendirilmesi için bicinchoninic asit (BCA) yöntemi kullanılmıştır (Smith ve ark, 1985). Bu yöntem Smart BCA protein assay kitı (Intron, Giyeonggi, G.Kore) ile yapılmıştır. Bu tahlinin mor renkli reaksiyon ürünü, bir bakır iyonu ile iki BCA molekülünün şelatlanmasıyla oluşturulmuştur. Bu suda çözünür kompleks 562 nm'de geniş bir çalışma aralığındaki artan protein konsantrasyonları ile doğruluklu ve güçlü bir absorbans sergilemektedir. (20-2,000 ug / ml)

Protein makromoleküller yapısı, peptit bağların sayısı ve belirli dört aminoasidin varlığı (sistein, sistin, triptofan ve tirosin) BCA ile renk oluşumundan sorumlu olduğu rapor edilmiştir. Buna göre, protein konsantrasyonları genellikle sığır serum albümini (BSA) gibi ortak bir proteinin standartlarına referansla belirlenir ve raporlanır. Bilinen konsantrasyondaki bir dizi dilüsyon proteininden hazırlanır ve bilinmeyen örnek konsantrasyonlarının standart eğriye göre belirlenmesi prensibinden yararlanılır. Buna göre sığır serum albumini (BSA) gibi ortak bir proteinin standartları kullanılarak protein konsantrasyonu belirlenmektedir. BSA proteininden bilinen konsantrasyondaki bir dizi dilüsyon yapılır ve bilinmeyen örnek konsantrasyonları, standart grafiğine göre hesaplanır.

Kit İçeriği;

Solution A
Solution B
BSA Solution (2 mg/mL)

Yapılış Yöntemi;

BSA stok solüsyonundan yola çıkılarak, distile su kullanılarak seri dilüsyonlar ile 25-2000 µg/ml arasında çeşitli standartlar hazırlanı ve eppendorflara eklendi.

Steril 96 well-plate’in kör kuyucuğuna (A1) 25 µl distile su, A2-A8 arası standartların kuyucuklarına ise seyreltiğin derişiğe sırasıyla standartlardan 25 µl, diğer
kalan kuyucuklara (B1-C8) ise sırasıyla -20 °C’den çıkarılan lizatlardan (Bölüm 3.4.12.’deki ön işlem uygulanarak lizis edilmiş örnekler) 25 µl konuldu.

Üzerine A solüsyonu ve B solüsyonunun (50:1) oranda karışımından hazırlanan çalışma solüsyonundan 200 µl eklendi ve 30 dk oda sıcaklığında bekletildi.

Standartlar ve örneklerde mor renk oluşumu gözlenmeye başladıktan sonra 562 nm’de okuma yapıldı.

Lizatlardaki protein miktarı, SMART BCA protein assay kit kullanılarak çizilen BSA standart grafiğinden (Şekil 21) elde edilen denkleme göre hesaplandı. Sonuçlar µg/ml olarak verildi. Bu denklem kullanılarak örneklerin bilinmeyen konsantrasyonlarını, yani total protein değerleri hesaplandı.

**Şekil 21. BCA kalibrasyon grafiği**

### 3.4.12.2. Biyokimyasal TOS ve TAS analizleri

**TOS yöntemi;**

AT15053A REL ASSAY DİAGNOSTİK (Gaziantep, Türkiye) ticari kitinin kullanım talimatına göre uygulandi.

Standart solüsyonundan 19’ar µl steril 96 well-plate (A1-A2) eklendi.
Örneklerden 19’er µl (Bölüm 3.4.12.’deki ön işlem uygulanarak lizis edilmiş örnekler) steril 96 well-platelere (B1-B4) eklendi.

En son Reagent 1 solüsyonundan 125’er µl standart ve örneklerin üzerine eklendi ve iyice karıştırıldı.

30 saniye sonra 530 nm’de A1 ilk okuma yapıldı.

Okuma işlemi bittikten sonra standart ve örneklerin üzerine 6’ar µl Reagent 2 eklendi.

37 °C’de 5 dakika inkübasyona bırakıldı.

530 nm’de A2 ikinci okuma yapıldı.

Hesaplama: A2-A1=∆Abs Standart ya da örnek

Sonuç: ∆Abs örnek / ∆Abs Standart x Standart Konsantrasyonu

Units= µmol/L

Standart Konsantrasyonu= 10 µmol/L

TAS yöntemi;

SR1150610 ASSAY DİAGNOSTİK (Gaziantep, Türkiye) ticari kitinin kullanım talimatına göre uygulandı.

Standart solüsyonundan 15’er µl steril 96 well-platelere (A1-A2) eklendi.

Örneklerden 15’er µl (Bölüm 3.4.12.’deki ön işlem uygulanarak lizis edilmiş örnekler) steril 96 well-platelere (B1-B4) eklendi.

En son Reagent 1 solüsyonundan 250’er µl standart ve örneklerin üzerine eklendi ve iyice karıştırıldı.

30 saniye sonra 660 nm’de A1 ilk okuma yapıldı.

37,5 ml Reagent 2 solüsyonundan eklendi.
37 °C'de 5 dakika inkübasyona bırakıldı.

660 nm'de A2 ikinci okuma yapıldı.

Hesaplama: A2-A1=ΔAbs Standart ya da örnek

Sonuç: ΔAbs H2O-ΔAbs Örnek / ΔAbs H2O-ΔAbs Standart

Units= mmol/L

3.4.12.3. SOD aktivite tayini


Kullanılan Reaktifler;

Standart SOD Solüsyonu: 1 mg süperoksit dismutase from bovine liver tartılıp 1 ml izotonik ile çözüldü. 2519 u/ml ana stok oluşturuldu. Ana stoktan yola çıkılarak kalibrasyon grafiği oluşturulmak için dilüsyonlar yapıldı.

<table>
<thead>
<tr>
<th>Dilüsyon Oranları</th>
<th>Ana Stok</th>
<th>İzotonik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2,5 U 1/1000</td>
<td>10 µl</td>
<td>9990 µl</td>
</tr>
<tr>
<td>5,038 U 1/500</td>
<td>10 µl</td>
<td>4990 µl</td>
</tr>
<tr>
<td>10,076 U 1/250</td>
<td>10 µl</td>
<td>2490 µl</td>
</tr>
<tr>
<td>25,19 U 1/100</td>
<td>10 µl</td>
<td>990 µl</td>
</tr>
<tr>
<td>50,38 U 1/50</td>
<td>10 µl</td>
<td>490 µl</td>
</tr>
<tr>
<td>100,76 U 1/25</td>
<td>10 µl</td>
<td>240 µl</td>
</tr>
<tr>
<td>251,9 U 1/10</td>
<td>10 µl</td>
<td>90 µl</td>
</tr>
</tbody>
</table>

SOD Deney Reaktifleri:

0,3 mmol/L ksantin: 9,13 mg ksantin (m_A=152,1 g/mol), distile su ile çözülüp 200 ml distile suya tamamlandı.
0,6 mmol/L EDTA: 22,33 mg EDTA \((m_A=372,2 \text{ g/mol})\), distile su ile çözülüp 100 ml distile suya tamamlandı.

150 µmol/L NBT: 12,25 mg NBT \((m_A=817,6 \text{ g/mol})\), distile su ile çözülüp 100 ml distile suya tamamlandı.

400 mmol/L \(\text{Na}_2\text{CO}_3\): 2,54 g \(\text{Na}_2\text{CO}_3\) \((m_A=105,93 \text{ g/mol})\), distile su ile çözülüp 60 ml distile suya tamamlandı.

1g/L bovin serum albumin: 300 mg BSA, distile su ile çözülüp 30 ml distile suya tamamlandı.

2 mol/L \((\text{NH}_4)_2\text{SO}_4\) (Amonyum Sülfat): 1,32 g amonyum sülfat \((m_A=132,1 \text{ g/mol})\), distile su ile çözülüp 5 ml distile suya tamamlandı.

**Ksantin Oksidaz Solüsyonu:**

0,857 u/mL ksantin oksidaz: 171,4 µl ksantin oksidaz \((0,4 \text{ u/mg protein})\) 828,6 µl amonyum sülfata tamamlandı.

**CuCl\(_2\) Solüsyonu:**

0,8 mmol/L CuCl\(_2\): 13,64 mg CuCl\(_2\) \((m_A=170,48 \text{ g/mol})\), 100 ml distile suya tamamlandı.

**Yapılış Yöntemi:**

Çalışmaya başlamadan önce 0,3 ml kloroform, 0,5 ml etanol ve 0,1 ml lizat (Bölüm 3.4.12.deki ön işlem uygulanarak lizis edilmiş örnekler) karıştırılıp 1 dakika boynunca vortekslendi. 18000 g’de 60 dakika boynunca santrifüj edildi.

Her deney tüpüne SOD deney reaktiflerinden 2,45 ml ve lizatlardan 0,5 ml eklenildi.

Ardından her deney tüpüne 50’er µl ksantin oksidaz solüsyonu eklenip alt üst edildi ve sıcak su banyosunda 25 °C’de 20 dakika boynunca inkübabşona bırakıldı.

Sonra reaksiyonu durdurmak için 0,8 mmol/L CuCl\(_2\) solüsyonunden 1’er ml eklendi.

Distile suya karşı 560 nm’de okutuldu.
İnhisyon oranı % = \( \frac{A_{\text{blank}} - A_{\text{sample}}}{A_{\text{blank}}} \times 100 \% \)

% İnhisyon-SOD kalibrasyon grafiği denkleminden yararlanılarak SOD değerleri hesaplandı. Bulunan SOD değerleri protein miktarına bölünerek SOD aktivitesi hesaplandı.

![SOD Kalibrasyon Grafiği](image)

**Şekil 22.** SOD kalibrasyon grafiği

### 3.4.12.4. G-Px aktivite tayini

Yine protein oksidasyon ürünlerinden olan G-Px (glutatyon peroksidaz) aktivite tayin yönteminde Paglia ve Valentin (1967) yöntemine göre yapılmıştır. \( \text{H}_2\text{O}_2 \) varlığında indirgenmiş glutatyon (GSH), GPx tarafından okside glutatyonu (GSSG) oksitlenir ve oksitlenen GSSG’nin glutatyon redüktaz enzimi aracılığıyla tekrar GSH’a dönüştürülmesi esnasında ortamda bulunan indirgenmiş nikotinamid adenin dinükleotid fosfat (NADPH) kullanılır. Kullanılan bu NADPH miktarı absorbansdaki azalış şeklinde 340 nm dalga boyunda izlenir. GPx aktivitesi kanda U/g Hb olarak ifade edilirken doku için ise U/g protein olarak tanımlanmaktadır. Hücre düzeyinde çalışırken genellikle IU/µg protein olarak ifade edilmektedir.
Kullanılan Reaktifler;

1 M Tris-HCl: 1,6 g Tris-HCl \((m_A=157,6 \text{ g/mol})\), distile suda çözülüp 10 ml distile suya tamamlandı.

5 mmol/L EDTA (pH=8): 0,093 g EDTA disodyum tuzu \((m_A=372,2 \text{ g/mol})\), distile suda çözülüp 50 ml distile suya tamamlandı.

0,1 M redükte glutatyon (GSH): 0,03 g GSH \((m_A=307,3 \text{ g/mol})\) 1 ml distile suya tamamlandı.

2 mM NADPH: 0,02 g NADPH \((m_A=833,3 \text{ g/mol})\), 1 ml distile suya tamamlandı.

1 u/ml glutatyon redüktaz: 2 µl enzimden çekip 998 µl distile suya tamamlandı.

7 mM t-butil hidroksiperoksit: 10 µl t-butil hidroperoksit çekip 2 ml suya tamamlandı.

Tüm reaktifler günlük hazırlandı.

Yapılış Yöntemi;

Tris-HCl-EDTA-100 µl

Redükte glutatyon-20 µl

Glutatyon redüktaz-100 µl

NADPH-100 µl

Örnekler-10 µl (Bölüm 3.4.12.’deki ön işlem uygulanarak lizis edilmiş örnekler)

Distile su-660 µl

37 °C’de 10 dakika inkübe edildi. 340 nm’de ilk okutma yapıldı. Ardından 10 µl t-butil hidroperoksit eklenip 2,5 ve 5 dakika aralıklarla 340 nm’de tekrar okutma yapıldı. NADPH’ın kayboluşu izlendi. OD’deki (optik dansite) azalış kaydedildi.

GPx Abs0 (0 dakika)

65
Abs1 (2,5 dakika)
Abs2 (5 dakika)

$$\text{GPx} = \left\{ \frac{(\text{Abs}0 - \text{Abs}2) \times 10^{6} \times 2.99}{(6.22 \times 10^{002} \times 0.02)} \right\} \times X (\text{IU/L})$$

$$= X \times \text{DF (Dilüsyon Faktörü)}/\text{Protein (g/100 ml)}/10$$

$$= \text{IU/g Protein}$$

Bulunan GPx değerleri, toplam protein miktarına bölünerek GPx aktivitesi hesaplandı.

### 3.4.12.5. MDA tayini

Lipid peroksidasyon ürünlerinden olan MDA (malondialdehit) tayini, tiyobarbitürlik asit (TBA) ile MDA’nın reaksiyon vererek 532 nm dalga boyunda ölçülebilen renkli bir bileşik verme esasına dayanmaktadır. Hücredeki MDA düzeyleri Ohkawa ve ark (1979) tarif ettiği yönteme göre tayin edilmiştir.

**Kullanılan Reaktifler;**

**%20 TCA Solüsyonu:**

20 g trikarboksilik asit (TCA) tartıldı, distile su ile çözüldü.

Balonjoje içinde 100 ml distile suya tamamlandı ve alt üst edilerek karşıtırdı.

%20’lik TCA çözeltisi hazırlanmış oldu.

**% 0,67 TBA Solüsyonu:**

0,67 g TBA tartıldı, distile su içinde çözüldü.

Balonjoje içinde 100 ml distile suya tamamlandı ve alt üst edilerek karşıtırdı.

% 0,67’lik TBA çözeltisi hazırlanmış oldu.
Yapılış Yöntemi;

50µl TBA+125 µl TCA+25µl (Bölüm 3.4.12.deki ön işlem uygulanarak lizis edilmiş örnekler) örnek eppendorfların içinde karıştırıldı.

95°C’de 30 dakika boyunca su banyosunda bekletildi.

Sonra buzlu suda soğutuldu.

200 µl n-butanol eklendi.

3000 rpm’de 10 dakika santrifüj edildi.

Üst faz olan süpernatant alındı

532 nm’de havaya karşı okundu.

Bulunan MDA değerleri, toplam protein miktarına bölünerek MDA aktivitesi belirlendi.

3.4.12.6. NO tayini


Kullanılan Reaktifler;

Kadmium (Cd) granülleri: küçük granüller haline getirildi.

Cd granülleri 0,1 M H₂SO₄ içinde saklandı. 1,12 ml H₂SO₄ 200 ml distile suya tamamlandı.

Glisin-NaOH tamponu Cd granüllerini aktifleştirmede kullanıldı: 1,5 g glisin distile suda çözülüp pH=9,7’ye ayarlandı. Toplam hacim distile su ile 100 ml’ye tamamlandı.
Sülfonilamid: 1 g sülfonilamid 100 ml sıcak 3 M HCl içinde çözüldü. Daha sonra soğutuldu.

3 M HCl: 24,90 ml HCl 100 ml distile suya tamamlandı.

75 mM ZnSO₄: 12,1103 g ZnSO₄ distile suda çözülp 1 L distile suya tamamlandı.

5 mM CuSO₄: 0,798 g CuSO₄ distile suda çözülp 1 L distile suya tamamlandı.

N-Naphtylethylene diamine (NNDA): 0,05 g NNDA 0,25 ml distile suda çözüldü.

Yapılış Yöntemi:

Tüplerin içine 125 µl örnek (Bölüm 3.4.12.deki ön işlem uygulanarak lizis edilmiş örnekler), 500 µl ZnSO₄ eklendi. Böylece deproteinizasyon işlemi yapılmış oldu.

Bunun üzerine 55 mM 625 µl NaOH eklendi (8 g NaOH tartıp 100 ml distile suya tamamlanarak 2 M NaOH çözeltisi hazırlanıtı. Sonra bu hazırlanan çözeltiden 275 µl çekip 9,725 µl distile suya tamamlanarak 55 mM 625 µl NaOH çözeltisi hazırlanıtı.)


Kadmiyum granüller aktifleştirildi. Her bir örnek için 2,5-3 g olacak şekilde miktarı ayarlanarak kadmiyumlар topluca bir erlenmayer içinde işleme tabi tutuldu. Sonra granüller deiyonize su ile yıkandı. 1-2 dakika 5 mM CuSO₄ solüsyonu içinde bekletildi ve solüsyon döküldü. Granüller önceden hazırlanmış olan Glisin-NaOH tamponu ile yıkarak granüllerin aktifleştirme işlemi gerçekleştirildi.

En son Glisin-NaOH tamponu ile yıkanmış aktif kadmiyum granülleri tüplerin içine eklendi.

Sonra hazırlanan başka cam tüplerde sırasıyla;

1 ml Glisin-NaOH tamponu

1 ml deproteinize örnek (Bölüm 3.4.12.deki ön işlem uygulanarak lizis edilmiş örnekler)
2 ml deiyonize su eklendi.

90 dakika oda sıcaklığında inkübe edildi. İnkübasyon sonunda her bir tüpten 2 ml alınıp üzerine sırasıyla;

2,5 ml deiyonize su
1 ml sülfonilamid
1 ml NNDA ilave edildi.

60 dakika oda sıcaklığında tekrar inkübe edildi. Ardından 545 nm’de köre karşı okuma yapıldı. Kör olarak deproteinizasyon işleminden itibaren numune yerine su kullanılarak tüm işlemler devam ettirildi.

**NaNO₂ Standartlarının Hazırlanması**

1. **Stok;** 0,1 mol/L NaNO₂ (0,69 g NaNO₂ (mA=69 g/mol) tartıldı, 100 ml distile suya tamamlandı.)

2. **Stok;** 0,5 mmol/L=500 µmol/L (1. stoktan 500 µl alındı, 100 ml distile suya tamamlandı.)

**Standartlar;** 100 µmol/L için 2. stoktan 1 ml alındı, 4 ml distile suya tamamlandı.

75 µmol/L için 2. stoktan 0,75 ml alındı, 4,25 ml distile suya tamamlandı.

50 µmol/L için 2. stoktan 500 µl alındı, 4,5 ml distile suya tamamlandı.

25 µmol/L için 2. stoktan 250 µl alındı, 4,75 ml distile suya tamamlandı.

10 µmol/L için 2. stoktan 100 µl alındı, 4,90 ml distile suya tamamlandı.

5 µmol/L için 2. stoktan 50 µl alındı, 4,95 ml distile suya tamamlandı.

2 µmol/L için 2. stoktan 20 µl alındı, 4,98 ml distile suya tamamlandı.

0,5 µmol/L için 2. stoktan 5 µl alındı, 4,995 ml distile suya tamamlandı.
Cam tüplere sırasıyla;

1 ml glisin tamponu,

1 ml hazırlanan standartlardan

1 ml deionize su ilave edildi.

90 dakika oda sıcaklığında inkübasyona bırakıldı.

İnkübasyon sonunda 2 ml alınıp üzerine;

1 ml deionize su

1 ml sülfonilamid

1 ml NNDA ilave edildi.

60 dakika oda sıcaklığında inkübasyona bırakıldı.

Ardından 545 nm’de okuma yapıldı.

Standart garfiği oluşturuldu.

Standart grafiğine göre değerlendirme yapıldı.

Bulunan NO değerleri, toplam protein miktarına bölünerek NO aktivitesi belirlendi.
Şekil 23. NO kalibrasyon grafiği

3.5. İstatistiksel Yöntemler

Elde edilen verilerin istatistiksel analizi SPSS (for Windows Release 17.0 Standart Version Copyright © SPSS Inc. 1989-2001) hazır paket programı kullanılarak yapıldı. Elde edilen doz-absorbans canlılık verileri, GraphPad Prism 6 (San Diego, CA, USA) hazır paket programı kullanılarak İC₅₀ değerleri nonlinear regresyon analizine göre belirlenmiştir. Varyans analizi uygulanmadan önce, çalışmadaaki parametrelerin normal dağılıp dağılmadıkları Kolmogorov-Smirnov testi ile incelenmiştir. Gruplara tek yön varyans analizi One-Way ANOVA uygulanarak sonuçlar ortalama ± standart hata olarak verilmiştir. İstatistiksel açıdan anlamlı F değerleri veren parametreler için ileri (post hoc) testler uygulanmıştır ve eşit örneklem büyüklüğüne dayalı Tukey testi kullanılmıştır. p<0,05 değeri istatistiksel olarak anlamlı kabul edilmiştir.
4. BULGULAR

4.1. Hücre Canlılığı Değerlendirme Bulguları

4.1.1. Etkin Oleuropein Dozunun Belirlenmesi

MCF-7 meme kanseri hücre hattı üzerine en etkin dozu belirleyebilmek amacıyla farklı dozlarda oleuropein uygulandı. Ardından WST-1 yöntemiyle oleuropeinin sitotoksitesi ve baskılayıcı konsantrasyon (IC₅₀) değeri belirlendi. 96 kuyucu plaklara ekilen oleuropeinin 24, 48 ve 72 saat sonundaki plak görüntüleri alındı. Ayrıca flasklara ekilen hücrelerdeki proliferasyonu göstermek amacıyla hücrelerin trinoküler invert mikroskop (olympus CKX41) ile görüntüleri alındı. Farklı konsantrasyonlardaki oleuropein uygulamasının 48 saatlik inkübasyon sonrası mikroskobik gözlem sonuçlarına göre; kontrol grubundaki hücrelerin, farklı konsantrasyonlarındaki oleuropein uygulanan grulara göre daha yoğun, aktif ve hareketli olduğu tespit edildi (Resim 17).

Resim 14. 24 saat oleuropeine maruz kalmış WST-1 testi görüntüsü
Resim 15. 48 saat oleuropeine maruz kalmış WST-1 testi görüntüsü

Resim 16. 72 saat oleuropeine maruz kalmış WST-1 testi görüntüsü
4.1.2. Etkin Vitamin D Dozunun Belirlenmesi

MCF-7 meme kanseri hücre hattı üzerine en etkin dozu belirleyebilmek amacıyla farklı dozlarda vitamin D uygulandı. Ardından WST-1 yöntemiyle vitamin D’nin sitotoksitesi ve baskılayıcı konsantrasyon (IC₅₀) değeri belirlendi. 96 kuyuculu plaklara ekilen D vitamininin 24, 48 ve 72 saat sonundaki plak görüntüleri alındı. Ayrıca flasklara ekilen hücrelerdeki proliferasyonu göstermek amacıyla hücrelerin trinoküler invert mikroskop (Olympus CKX41) ile görüntüleri alındı. 24. saatte anlamlı bir inhibisyon gözlemlenmedi. Bu yüzden farklı konsantrasyonlardaki vitamin D uygulamasının 48 ve 72 saatlik inkübasyon sonrası mikroskobik gözlem sonuçlarına göre; kontrol grubundaki hücrelerin, farklı konsantrasyonlarındaki oleuropein uygulanan gruplara göre yine daha yoğun, aktif ve hareketli olduğu tespit edildi (Resim 20).

Resim 17. 48 saat oleuropeine maruz kalmış hücrelerin mikroskobik görüntü (X40)
Resim 18. 48 saat D vitaminine maruz kalmış WST-1 testi görüntüsü

Resim 19. 72 saat D vitaminine maruz kalmış WST-1 testi görüntüsü
Resim 20. 48 saat D vitaminede maruz kalmış hücrelerin mikroskobik görüntüsü (X40)

4.1.3. Oleuropeinin Anti-proliferatif Etkisinin WST-1 Yöntemiyle Belirlenmesi

Hücre yoğunluğu, proliferasyonunu değerlendirilme için yapılan, canlı hücrelerden tetrazolium tuzlarının ayrıştırılmasına dayanan non-radyoaktif, spektrofotometrik, kolorimetrik bir test olan WST-1 (water-soluble tetrazolium salt) testi kiti (Sigma Aldrich, USA) ile belirlendi. 96’lık plak içerisine her bir kuyucuğa 200 µl volüm içerisinde 0,5x10^4 MCF-7 hücre hattı olacak şekilde hücre süspansiyonu aktarıldı. Her bir grup için üç ayrı kuyucuca çalışma yapıldı. Belirtilen süre ve dozlarda oleuropein uygulandı. Deneyin sonunda her bir kuyucuğa 10 µl WST-1 solüsyonundan eklenerek oleuropeinin 24. saattaki baskılayıcı konsantrasyon (IC₅₀) değeri 256,1 µM olarak bulundu. 48. saatteki baskılayıcı konsantrasyon (IC₅₀) değeri 247,5 µM olarak bulundu. 72. saatteki baskılayıcı konsantrasyon (IC₅₀) değeri ise 222,5 µM olarak bulundu.
Şekil 24. Oleuropeinin 24. saatteki IC₅₀ değeri

Şekil 25. Oleuropeinin 48. saatteki IC₅₀ değeri
Oleuropeinin 72. saatteki IC$_{50}$ değeri 4.1.4. Vitamin D’nin Anti-proliferatif Etkisinin WST-1 Yöntemiyle Belirlenmesi

Hücre yoğunluğu, proliferasyonu değerlendirmek için yapılan, canlı hücrelerden tetrazolium tuzlarının ayrıtırılmasına dayanan non-radyoaktif, spektrofotometrik, kolorimetrik bir test olan WST-1 (Water-soluble tetrazolium salt) testi kiti (Sigma Aldrich, USA) ile belirlendi. 96”lık plak içerisine her bir kuyucuğa 100 µl volüm içerisinde 0,5x10$^{4}$ MCF-7 hücre hattı olacak şekilde hücre süspansiyonu aktarıldı. Her bir grup için üç ayrı kuyucuktaki çalışma yapıldı. Belirtilen süre ve dozlarda vitamin D uygulandı. Deneyin sonunda her bir kuyucuğa 10 µl WST-1 solüsyonundan eklendi. Vitamin D’nin 24. saatinde anlamlı bir inhibisyon gözlemlenmedi. 48. saatteki baskılayıcı konsantrasyon (IC$_{50}$) değeri 2,053 µM olarak bulundu. 72. saatteki (IC$_{50}$) değeri ise 4,083 µM olarak bulundu.
Şekil 27. Vitamin D’nin 48. saatteki IC50 değeri

Şekil 28. Vitamin D’nin 72. saatteki IC50 değeri
4.2. WST-1 Yöntemiyle Elde Edilen Sitotoksite Sonuçları

Şekil 24’de görüldüğü gibi oleuropeinin 24. saattaki baskılayıcı konsantrasyon (IC\textsubscript{50}) değeri 256,1 µM olarak bulundu. Şekil 25’de görüldüğü gibi oleuropeinin 48. saattaki baskılayıcı konsantrasyon (IC\textsubscript{50}) değeri 247,5 µM olarak bulundu. Şekil 26’da görüldüğü gibi oleuropeinin 72. saatteki baskılayıcı konsantrasyon (IC\textsubscript{50}) değeri ise 222,5 µM olarak bulundu.

Şekil 27’de görüldüğü gibi vitamin D’nin 48. saatteki baskılayıcı konsantrasyon (IC\textsubscript{50}) değeri 2,053 µM olarak bulundu. Şekil 28’de görüldüğü gibi vitamin D’nin 72. saatteki (IC\textsubscript{50}) değeri ise 4,083 µM olarak bulundu. Hem toksisiteyi ve oksidatif stres etkisini azaltmak için hem de gelecek çalışmalarında deney hayvan, faz çalışmalarda kullanılabileceğine için 48. saatin etkin dozları seçildi.

4.3. Apoptoz Değerlendirme Sonuçları

Şekil 29. Apoptoz değerlendirme sonuçları
Anneksin V testi için, kontrol grubunda yaşam oranı %64,75 iken, sırasıyla oлеuropein tedavisinde %44,45, vitamin D tedavisinde %44,40, kombinasyon tedavisinde ise %36,20 olarak bulunmuştur.

Kontrol grubuna göre apoptotik ölüm sürecinin erken evrelerinin %1,70’den oлеuropein tedavisi için %14,85’e, kombinasyon tedavisi için %6,45’e çıktığı tespit edilmiştir. Vitamin D tedavisi için %0,95’e düştüğü tespit edilmiştir.

Kontrol grubuna göre apoptotik ölüm sürecinin geç evreleri değerinin %31,60’dan oлеuropein tedavisi için %40,15’e, vitamin D tedavisi için %49,45’e, kombinasyon tedavisi için ise %52,95’e çıktığı tespit edilmiştir.

Kaspaz 3/7 testi için, kontrol grubunda yaşam oranı %98,65 iken, sırasıyla oлеuropein tedavisinde %63,31, vitamin D tedavisinde %32,13, kombinasyon tedavisinde %5,65 olarak bulunmuştur.

Kontrol grubuna göre apoptotik ölüm sürecinin erken evrelerinin %0,20’den oлеuropein tedavisi için %6,60, vitamin D tedavisi için %3,91, kombinasyon tedavisi için ise %2,80’e çıktığı tespit edilmiştir.

Kontrol grubuna göre apoptotik ölüm sürecinin geç evreleri değerinin %0,45’den ołeuropein tedavisi için %26,62’ye, vitamin D tedavisi için %61,59’a, kombinasyon tedavisi için ise %88,15’e çıktığı tespit edilmiştir. Anneksin V ve kaspaz 3/7 testleri, 3 tekrar yapılarak çalışıldı. Şekil 29, bir çalışmaya ait olup, diğer çalışmaların da şekilleri mevcuttur. Tablo 10 ve tablo 11’de gösterilen değerler, 3 tekrarda çıkan sonuçların ortalamalarıdır.

**Tablo 10.** 48 saatlik ölçümlede elde edilen yüzde oran (%) apoptoz (Anneksin V) değerleri ve standart hata değerleri (n=3)
Tablo 11. 48 saatlik ölçümlerde elde edilen yüzde oran (%) apoptoz (Kaspaz 3/7) değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Gruplar</th>
<th>Canlı</th>
<th>Erken Apoptoz</th>
<th>Geç Apoptoz</th>
<th>Nekroz</th>
<th>Total Apoptoz</th>
<th>Std Hata</th>
<th>Std Hata</th>
<th>Std Hata</th>
<th>Std Hata</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>98,1</td>
<td>0,2</td>
<td>0,5</td>
<td>0,6</td>
<td>0,7</td>
<td>0,4</td>
<td>0,0</td>
<td>0,1</td>
<td>0,0</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>63,6</td>
<td>6,4</td>
<td>26,2</td>
<td>3,2</td>
<td>32,6</td>
<td>0,5</td>
<td>0,1</td>
<td>0,3</td>
<td>0,2</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>34,0</td>
<td>3,3</td>
<td>61,3</td>
<td>2,4</td>
<td>64,7</td>
<td>1,0</td>
<td>0,3</td>
<td>0,5</td>
<td>0,2</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>5,0</td>
<td>2,8</td>
<td>88,4</td>
<td>3,4</td>
<td>91,2</td>
<td>0,4</td>
<td>0,1</td>
<td>0,5</td>
<td>0,1</td>
</tr>
</tbody>
</table>

4.3.1. Anneksin V Testi Sonuçları

Tablo 12. Anneksin V testi sonuçları

*; Oleuropein tedavisi ile diğer tedavi grupları arasında erken apoptoz parametresinde istatistiksel olarak anlamlı fark gözlemlemiştir (p<0,05). Oleuropein tedavisi, diğer tedavi gruplarına göre erken apoptoz gelişimini oransal olarak anlamlı arttırmasıdır (p<0,05).

#; Kombinasyon tedavisi ile diğer tedavi grupları arasında geç apoptozis parametresinde istatistiksel olarak anlamlı fark gözlemlemiştir (p<0,05). Kombinasyon
tedavisi, diğer tedavi gruplarına göre geç apoptoz gelişimini oransal olarak anlamlı arttırmıştır (p<0,05).

Ψ: Kombinasyon tedavisi ile diğer tedavi grupları arasında total apoptoz (erken+geç apoptoz) parametresinde istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Kombinasyon tedavisi, diğer tedavi gruplarına göre total apoptoz gelişimini oransal olarak anlamlı arttırmıştır (p<0,05).

4.3.2. Kaspaz 3/7 Testi Sonuçları

Tablo 13. Kaspaz 3/7 testi sonuçları

*; Oleuropein tedavisi ile diğer tedavi grupları arasında erken apoptoz parametresinde istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Oleuropein tedavisi, diğer tedavi gruplarına göre erken apoptoz gelişimini oransal anlamlı olarak arttırmıştır (p<0,05).

#; Kombinasyon tedavisi ile diğer tedavi grupları arasında geç apoptoz parametresinde istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Kombinasyon tedavisi, diğer tedavi gruplarına göre geç apoptoz gelişimini oransal olarak anlamlı arttırmıştır (p<0,05).
Ψ: Kombinasyon tedavisi ile diğer tedavi grupları arasında total apoptoz (erken+geç apoptoz) parametresinde istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Kombinasyon tedavisi, diğer tedavi gruplarına göre total apoptoz gelişimini oransal olarak anlamlı arttırmıştır (p<0,05).

ω: Vitamin D tedavisi ile oleuropein tedavisi ve kontrol grupları arasında geç apoptoz parametresinde istatistiksel olarak anlamlı fark vardır (p<0,05).

Ω: Vitamin D tedavisi ile oleuropein tedavisi ve kontrol grupları arasında total apoptoz parametresinde istatistiksel olarak anlamlı fark vardır (p<0,05).

4.4. Biyokimyasal Analizler

4.4.1. Total Protein Analizi Sonuçları

SOD, G-Px, MDA ve NO sonuçları protein değerine hesaplanmıştır. Total proteinin kolorimetrik tespiti ve nicelendirilmesi, bicinchoninic asit (BCA) yöntemine göre değerlendirilmiştir.

**Tablo 14.** 48 saatlik ölçümlerde elde edilen ortalama toplam protein miktarı ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Grup</th>
<th>Ortalama Toplam Protein μg/mL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Konsantrasyon</td>
<td></td>
</tr>
<tr>
<td>Kontrol</td>
<td>11,8 ± 0,1</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>12,8 ± 0,1</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>10,6 ± 0,2</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>11,1 ± 0,1</td>
</tr>
</tbody>
</table>
**Tablo 15.** BCA protein analiz sonuçları

![BCA Protein Analizi](image)

*; Kontrol grubu ile diğer tedavi grupları arasında istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05).

#; Oleuropein tedavisi ile diğer tedavi grupları arasında istatistiksel olarak anlamlı fark vardır (p<0,05).

Ψ; Vitamin D tedavisi ile kombinasyon tedavi grubu arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).

### 4.4.2. Biyokimyasal Total Oksidan ve Total Antioksidan Kapasitesi Analizi Sonuçları

**Tablo 16.** 48 saatlik ölçümlerde elde edilen total oksidan kapasite (TOS) değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Konsantrasyon</th>
<th>Total Oksidan Kapasite μmol/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>20,4 ± 0,2</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>7,3 ± 0,3</td>
</tr>
<tr>
<td>VitaminD</td>
<td>12,6 ± 0,3</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>1,4 ± 0,1</td>
</tr>
</tbody>
</table>
Tablo 17. Total oksidan kapasite

*; Kontrol grubu ile diğer tedavi grupları arasında istatistiksel olarak oldukça anlamlı fark gözlemlenmiştir (p<0,05).

#; Oleuropein tedavisi ile diğer tedavi grupları arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Oleuropein tedavisi, vitamin D tedavisine göre TOS’u anlamlı seviyede düşürmüştür. Ayrıca, kombinasyon tedavisi, TOS’u oleuropein tedavi grubuna göre anlamlı ölçüde düşürmüştür (p<0,05).

Ψ; Vitamin D tedavisi ile kombinasyon tedavisi arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Kombinasyon tedavisi, TOS’u vitamin D tedavisine göre anlamlı ölçüde düşürmüştür (p<0,05).

Tablo 18. 48 saatlik ölçümlerde elde edilen TAS değerleri ve standart hata değerleri (n=3)
Tablo 19. Total antioksidan kapasite

*; Kontrol grubu ile vitamin D ve kombinasyon tedavileri arasında istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Kontrol grubu ile oleuropein tedavisi arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).

#; Oleuropein tedavisi ile diğer tedavi grupları arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).

Ψ; Vitamin D tedavisi ile oleuropein ve kombinasyon tedavi grubu arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).

Tablo 20. 48 saatlik ölçümlerde elde edilen OSI değerleri ve standart hata değerleri (n=3)
Tablo 21. Oksidatif stres indeksi (OSİ)

*; Kontrol grubu ile diğer tedavi grupları arasında OSI parametresinde istatistiksel olarak oldukça anlamlı fark gözlemlenmiştir (p<0,05).

#; Oleuropein tedavisi ile diğer tedavi grupları arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Oleuropein tedavisi, vitamin D tedavisine göre OSI’yı anlamlı ölçüde düşürmüştür. Ayrıca kombinasyon tedavisi, OSI’yı oleuropein tedavisine göre anlamlı ölçüde düşürmüştür (p<0,05).

Ψ; Vitamin D tedavisi ile kombinasyon tedavisi arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Kombinasyon tedavisi, OSI’yı vitamin D tedavisine göre anlamlı ölçüde düşürmüştür (p<0,05).
4.4.3. Süperoksit Dismutaz (SOD) Aktivite Sonuçları

**Tablo 22.** 48 saatlik ölçümlerde elde edilen SOD değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Konsantrasyon</th>
<th>SOD (U/μg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>6,1 ± 0,009</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>5,8 ± 0,017</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>6,9 ± 0,003</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>6,0 ± 0,042</td>
</tr>
</tbody>
</table>

**Tablo 23.** Süperoksit dismutaz (SOD) aktivitesi

*; Kontrol grubu ile oleuropein, vitamin D ve kombinasyon tedavi grupları arasında istatistiksel olarak anlamlı fark vardır (p<0,05).

#; Oleuropein tedavi grubu ile vitamin D ve kombinasyon tedavi grupları arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Vitamin D tedavisi, SOD aktivitesini anlamlı ölçüde artırılmıştır (p<0,05).

Ψ; Vitamin D tedavi grubu ile kombinasyon tedavi grubu arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Vitamin D tedavisi, kombinasyon tedavi grubuna göre, SOD aktivitesini anlamlı ölçüde artırılmıştır (p<0,05).
4.4.4. Glutatyon Peroksidaz (GPx) Aktivite Sonuçları

Tablo 24. 48 saatlik ölçümlerde elde edilen GPx değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Kontrantrasyon</th>
<th>GPx Protein (IU/μg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>284,4 ± 1,33</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>352,6 ± 0,5</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>254,2 ± 1,4</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>253,3 ± 1,2</td>
</tr>
</tbody>
</table>

Tablo 25. Glutatyon peroksidaz (GPx) aktivitesi

*; Kontrol grubu ile diğer tedavi grupları arasında GPx parametresinde istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05).

#; Oleuropein tedavisi ile diğer tedavi grupları ve kontrol grubu arasında istatistiksel olarak anlamlı fark vardır (p<0,05). Oleuropein tedavisi, vitamin D ve kombinasyon tedavisine göre GPx’i anlamlı ölçüde arttırmıştır.

Ψ; Vitamin D tedavi grubu ile kombinasyon tedavi grubu arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).
4.4.5. Malondialdehit (MDA) Analizi Sonuçları

Tablo 26. 48 saatlik ölçümlerde elde edilen MDA değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Konsantrasyon</th>
<th>MDA (nM/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>0,35 ± 0,003</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>0,38 ± 0,006</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>0,38 ± 0,003</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>0,36 ± 0,003</td>
</tr>
</tbody>
</table>

Tablo 27. Malondialdehit (MDA) analizi

*; Kontrol grubu ile oleuropein ve vitamin D tedavileri arasında istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Ancak, kontrol grubu ile kombinasyon tedavisi arasında istatistiksel olarak anlamlı fark bulunmadı (p>0,05). Oleuropein ve vitamin D tedavisi, kontrol grubuna göre MDA miktarını artırdığı görüldü (p>0,05).

#; Oleuropein tedavisi ile kombinasyon tedavisi arasında istatistiksel olarak anlamlı fark vardır (p<0,05).

Ψ; Vitamin D tedavisi ile kombinasyon tedavisi arasında da istatistiksel olarak anlamlı fark vardır (p<0,05).
4.4.6. Nitrik Oksit (NO) Analizi Sonuçları

Tablo.28. 48 saatlik ölçümlerde elde edilen NO değerleri ve standart hata değerleri (n=3)

<table>
<thead>
<tr>
<th>Konsantrasyon</th>
<th>NO (μmol/mg protein x10^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kontrol</td>
<td>4,1 ± 0,009</td>
</tr>
<tr>
<td>Oleuropein</td>
<td>4,1 ± 0,012</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>4,3 ± 0,015</td>
</tr>
<tr>
<td>Kombinasyon</td>
<td>4,1 ± 0,006</td>
</tr>
</tbody>
</table>

Tablo.29. Nitrik oksit (NO) analizi

*; Kontrol grubu ile oleuropein ve kombinasyon tedavi grupları arasında nitrik oksit (NO) parametresinde istatistiksel olarak anlamlı fark yoktur (p>0,05).

#; Vitamin D tedavi grubu ile diğer tedavi grupları arasında istatistiksel olarak oldukça anlamlı fark vardır (p<0,05). Vitamin D tedavi grubu, diğer tedavi gruplarına göre NO miktarını anlamlı artırdığı görülmektedir.
5. TARTIŞMA


sebeple kemoterapötik ajanların antioksidan etki göstermesi, normal hücreleri tahrip etmemesi açısından önem teşkil etmektedir.


Deney hayvanlarında yapılan çalışmalar zeytinağının kolon, deri, meme ve karaciğer, prostat kanserlerine karşı etkili olduğunu göstermiştir. Zeytinağının kanserden koruyucu özellikleri arasında tekli doymamış yağ asitleri, prolifenoller adlı antioksidanlar ve zeytinağına özgü squalen adlı madde önem teşkil etmektedir (Mutaf, 2017). Yapılan bir çalışmada, zeytin meyvesinde, yağında ve yapraklarında bulunan, oleuropeinin hidrolizi ile açığa çıkan fenolik bir bileşik olan hidroksitirosolün promiyelositik HL-60 lösemi hücreleri ve insan kolon kanseri hatlarında hücre çoğalmasını inhibe ettiği gözlemlenmiş (Fabiani ve ark, 2006; Fini ve ark, 2008). Yapılan diğer birkaç çalışmada da zeytinağı fenolik bileşiklerinin MCF-7 ve SKBR3 meme kanseri hücrelerinde hücre büyümesi doza bağımlı


95

Elamin ve arkadaşlarının 2013’de yaptıkları çalışmaya baz alınarak meme kanseri hücrelerini 100 ve 200 μM konsantrasyonda oleuropeine maruz bırakmışlardı. Sonuç olarak oleuropeinin meme kanseri için potansiyel bir terapötik ajan olabileceği kararına varılmışlardır. Oleuropeinin potansiyel bir terapötik ajan olabilmesi, güçlü bir antioksidan özellik gösterdiği için ayrıca önem taşımaktadır. Bizim çalışmamızda da, bu çalışmamızdaki dozlar referans alınarak 24 saatlik ölçüm için 12,5, 25, 50, 100, 200, 400, 600, 800, 1000, 1200, 1600 μM, 48 saatlik ölçüm için 9,4, 18,75, 37,5, 75, 150, 300, 400, 600, 800, 1000, 1200 μM ve 72 saatlik ölçüm için 6,25, 12,5, 25, 50, 100, 200, 300, 400, 500, 600, 800 μM konsantrasyonlarda oleuropein MCF-7 hücrelerine maruz bırakılmıştır. Oleuropeinin 24. saatteki IC50 değeri 256,1 μM, 48. saatteki IC50 değeri 247,5 μM, 72. saatteki IC50 değeri ise 222,5 μM olarak bulunmuştur. 48. saatteki IC50 değerlerinin apoptozu indüklediğini gözlemlemiştir. Yine aynı IC50 dozlarında güçlü bir antioksidan etki de gösterdiği saptanmıştır.


Aerobik metabolizmanın yan ürünü olarak ortaya çıkan reaktif oksijen radikalleri ile oksidatif stressin sentesi arasında anlamlı ilişkiler mevcuttur. Goya ve ark (2007) yaptıkları çalışmada insan hepatoma HepG2 hücrelerini, hidroksitirosol ile muamele etmişler ve reaktif oksijen türleri üretiminde bir azalma saptamışlardır. Fenolik bileşiklerin vücuda alınırken sonra plazmadaki antioksidan aktivitesinin arttığı insanlar üzerinde yapılan bazı çalışmalarda ifade edilmiştir (Salvini ve ark, 2006; Visioli ve ark, 2005). Metin ve ark (2016) yaptıkları çalışmada oleuropeinin farelere arsenik kaynaklı oksidatif stresi iyileştirdiğini gözlemlediler. Bu çalışma için farelere günde kg başına 5 mg arsenik verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu. Ayrıca zamanda günde kg başına 30 mg oleuropein verildi ve bir grup oluşturuldu.
verildi ve başka bir grup oluşturuldu. Deneyin sonunda hayvanlar sakrifiye edilerek karaciğer, böbrek ve beyinleri alındı. Oluşturulan iki grup arasında kan, karaciğer, böbrek ve beyindeki MDA ve nitrik oksit seviyelerine bakıldı. Arsenik verilen farelerin, kanında ve dokularındaki NO seviyesinin düştüğünü, MDA seviyesinin ise yükseldiğini gözlemlemişlerdir. Oлеuropeinin tedavisinin MDA ve NO seviyelerini normalize etmede anlamlı etkileri olduğu kanısına varmışlardır. De La Puerta ve ark (2001) yaptığı çalışmada oлеuropeinin hem nitrik oksit süpürme yeteneğine sahip olduğu hem de hücrede indüklenebilir nitrik oksit sentezini normalize etmeyi sağladığı bilmiştir. Bizim çalışmamızda kontrol grubu ile oлеuropein ve kombinasyon tedavi grupları arasında nitrik oksit (NO) parametresi arasında istatistiksel olarak anlamlı bir fark gözlemlenmemiştir (p>0,005). Vitamin D tedavi grubu, diğer tedavi gruplarına göre NO düzeyini normalize etmekde anlamlı etkileri olmuştur (p<0,05).

Literatür incelendiğinde pek çok çalışmada sayısız gözlemelar verildere göre klinik çalışmalar zeytinyağındaki fenolik asitler gibi polifenolikler, çayda, çikolata ve üzümde bulunan flavonoller ve soya ürünlerinde bulunan izoflavonların meme kanseri riskini azalttığını göstermiştir. Buna göre polifenolce zengin akdeniz yaği diyeti ile beslenenlerin meme kanserine yakalanma riskinin azaldığı gözlemlemiştir. Tüm bu sebeplerden dolayı kişisel diyeti çok önem teşkil eder. Meme kanseri hastalarının çay, soğan, brokoli, meyve (elma, narenciye) içeren flavonol polifenollerce zengin yiyecekleri tüketmeleri önerilir (Braakhuis ve ark, 2016).

vitamini düzeyleri arasındaki ilişki hakkında birçok hipotez ortaya konulmuştur (Holick, 2007).


çalışmamızda da Saraçlıgil ve ark 2017’de yaptıkları çalışma göz önünde bulundurulup 0,98, 1,95, 3,906, 7,8125, 15,62, 31,25, 62,50, 125, 250, 500, 1000 nM’a kadar geniş konsantrasyon aralığında antiproliferatif etkinlik WST-1 testi çalı̇ştı̇ldı̇. Fakat 24, 48 ve 72. saatte de anı̇amlı bir inhibisyon gözlemlenmedi. Anı̇amlı bir sonuç çı̇kmayınca tekrar çalı̇şı̇ldı̇. Tekrar edilen çalı̇şma, Murray ve ark (2017) yaptıkları çalı̇şma referans alınarak yapı̇ldı̇. Murray ve ark (2017) yaptıkları çalı̇şmanda MCF-7 hücre hattının kalsitriol üzerine etkisi MTT testi ile bakılmışlar ve IC50 değerini 1.83 ± 0.69 µM olarak bulmuşlardır. Bizim çalı̇şmamızda da Murray ve ark (2017) yaptıkları çalışma göz önünde bulundurularak 0,25, 0,5, 1, 2, 3, 4, 6, 8, 12 µM olarak konsantrasyon aralığı belirlendi. 48. saatte IC50 değeri 2,053 µM olarak bulundu. 72. saatteki IC50 değeri ise 4,083 µM olarak bulundu. İleride yapılacak olan deney hayvanları ve faz çalı̇şmalarında toksik etkiye engelmek için tedavi olarak 48. saat seçildi. 48. saat bulunan IC50 değerlerinin kombinasyon kullanı̇mlarının aynı şekilde apoptozu daha etkin bir şekilde indüklediği ve daha güçlü bir antioksidan etki gösterdigi gözlemlenmiştir. Bu da oleuropein ve vitamin D kombinasyonunun güçlü bir sinerjik bir etki olduğuunu göstermektedir.


Yine Noureen ve ark (2017) yılında vitamin D eksikliği ile meme kanseri arasındaki ilişkiyi belirlemek amacıyla bir çalışma yapmıştır. Çalışmada yaşları 20-75 arasında olan kontrol grubu ve yeni teşhis konulan hasta grubu belirlenmiştir. 25-OH-D3 seviyeleri ELIZA yöntemi ile ölçülmüş ve ng/ml olarak kaydedilmiştir. 20 ng/ml’nin altındaği serum değerleri vitamin D eksikliği olarak değerlendirildi. Vitamin D seviyesi kontrol grubu ile


Yapılan çalışmada meme karsinoma tanısı almış hastaların serumlarında malondialdehit (MDA), nitrik oksit (NO), kırmızı kan hücreleri süperoksi dismutaz aktivitesi (RBC-SOD), nitrik oksit sentaz (NOS), glutatyon (GSH), vitamin A, C, E, bakır (Cu), çinko (Zn), glutatyon peroksidad (GPx) ve katalaz (CAT) seviyelerine bakılmıştır. Sağlıklı kontrol grubu ile kıyaslandığında MDA, NO ve RBC-SOD seviyeleri anlamlı olarak yüksek bulundu. Bununla beraber GSH, vitamin A, C, E, bakır ve çinko aktiviteleri, GPx ve katalaz seviyeleri anlamlı derecede düşük bulunmuştur. Serumda daha yüksek MDA seviyesine sahip olan hastalar, serumda antioksidanların eksikliğini göstermiştir. Bu sebeple meme kanseri hastalarının antioksidan ve oksidan seviyelerini dengelemek için besleyici takviyeleri almaları önerilir (Hussain ve Ashafaq 2018).

Omar ve ark (2011) yaptıkları çalışmada kemoterapi gören meme kanseri olan hastalarda total antioksidan kapasiteye, ürikasit, MDA, nitrik oksit (nitrit/nitrat), Cu$^{2+}$ ve Fe$^{2+}$ seviyelerine bakmışlardır. Sağlıklı kontrol grubu ile kıyaslandığında meme kanseri olan hastalarda total antioksidan kapasite (TAS) (%32,7-%37,5), ürik asit (%28,1-%49,2), MDA (%20,7-%25,2) ve nitrik oksit (%50,4-%60,9) anlamlı seviyede düşüş gösterdiğini gözlemlemişlerdir. Cu$^{2+}$ ve Fe$^{2+}$ seviyeleri de sağlıklı kontrol gruplarına göre anlamlı seviyede azaldığını gözlemlemişlerdir. Feng ve ark (2012) yaptıkları çalışmada meme kanseri teşhisi almış hastalarda total antioksidan seviye (TAS), total oksidan seviye (TOS), oksidatif stres indeksi (OSİ), ve Cu, Zn, Fe, Se, Mg ve Mn seviyelerine bakmışlardır. Zn hariç tüm eser elementler benzer seviyelerde bulunmuşlardır. Sağlıklı kontrol grubu ile kıyaslandığında TAS seviyesi düşük bulunmuştur. Bu sonuçlar eser elementlerin seviyelerinden daha çok TAS, TOS ve OSİ değerlerinin meme kanserinin klinik durumunu izlemek için yararlı biyobelirteçler olabileceğini göstermektedir. Bu biyobelirteçler, meme kanserinin patogenezinin aydınlatılmasında da katkı sağlayabilir (Feng ve ark 2012). Wu ve ark (2017) yaptıkları çalışmada kolorektal kanser teşhisi almış hastaların TAS, TOS ve OSİ değerlerine bakıldığında, TOS ve OSİ değerlerinin anlamlı derecede yüksek (p<0,01), TAS değerinin ise anlamlı derecede düşük olduğu gözlemlemiştir (p<0,01). Şener ve ark (2007) yaptıkları çalışmada meme kanseri teşhisi almış hastaların serumlarında total antioksidan seviye (TAS) seviyelerini kontrol grubu ile kıyaslandığında anlamlı derecede düşük seviyede bulunmuşlardır (2.01±0.01 mmol/l ve 2.07±0.03 mmol/l, p<0.05). MDA seviyelerini ise anlamlı derecede yüksek bulunmuşlardır (3.64±0.25 mM ve 2.72±0.22 mM, p<0.05). Yine Gönenç ve ark (2001) yaptıkları
çalışmada meme ve akciğer kanseri teşhisi almış hastaların serumlarında lipid peroksidasyon markörü olan MDA seviyelerini sağlıklı kontrol gruplarına göre anlamlı derecede yüksek bulunmuşlardır (p<0,001). Ortalama MDA seviyeleri meme kanseri teşhisi almış hastalarda 6,33 µmol/l iken akciğer kanseri teşhisi almış hastalarda 5,87 µmol/l olarak bulunmuştur. Torun ve ark (1995) yaptıkları çalışmada da buna benzer şekilde meme kanseri teşhisi almış hastaların serumlarında lipid peroksidasyon markörü olan MDA seviyelerini sağlıklı kontrol gruplarına göre anlamlı derecede yüksek bulunmuşlardır (p<0,005). Ortalama MDA seviyeleri meme kanseri teşhisi almış hastalarda 6,82 µmol/l iken sağlıklı kontrol gruplarının MDA seviyeleri 3,65 µmol/L olarak bulunmuştur. Bizim çalışmamızda MCF-7 hücre hattı üzerine oleuropein, vitamin D ve oleuropein-vitamin D kombinasyonunun IC50 dozları verildiğinde TOS, TAS, SOD, GPx, MDA ve NO seviyelerine bakılmıştır.

TOS analizlerine bakacak olursak; oleuropein tedavisine göre TOS’u anlamlı ölçüde düşürmüştür. Kombinasyon tedavisine de TOS’u oleuropein tedavisine göre anlamlı ölçüde düşürmüştür. Kombinasyon tedavisinde, TOS’u vitamin D tedavisine göre de anlamlı ölçüde düşürmüştür. Bu sonuçlar, kombinasyon tedavisinin güçlü bir sinerjetik etkiye sahip olduğunu göstermektedir.

TAS sonuçlarına bakacak olursak; kontrol grubu ile vitamin D ve kombinasyon tedavisi arasında istatistiksel olarak anlamlı fark gözlemlenmiştir (p<0,05). Kontrol grubu ile oleuropein tedavisi arasında istatistiksel olarak anlamlı fark yoktur (p>0,05).

Total oksidan seviyesinin total antioksidan seviyesine bölünmesiyle bulunan oksidatif stres indeksi hesaplanmıştır. Oleuropein tedavisi, vitamin D tedavisi göre OSİ’yı anlamlı ölçüde düşürmüştür. Ayrıca, kombinasyon tedavisi OSİ’yı oleuropein tedavisi göre anlamlı ölçüde düşürmüştür. Kombinasyon tedavisi, OSİ’yı vitamin D tedavisi için de anlamlı ölçüde düşürmüştür (p<0,05). Yapılan pek çok çalışmaya paralel olarak oleuropein ve vitamin D, meme kanseri hücre hattında bir antioksidan etki göstererek OSİ’yı düşürmüştür. Ayrıca oleuropein ve D vitamininin kombin tedavisi, tek tek etkisinden daha etkili olmuştur. Buradan kombinasyon tedavisinin antioksidan etkisinin sinerjetik bir etkisi olduğunu söyleyebiliriz. Yapılan pek çok çalışmada TAS, TOS seviyelerinin yanı sıra eser element seviyelerine de bakılmıştır. Fakat araştırcılar, eser elementlerin seviyelerinden daha çok TAS, TOS ve OSİ değerlerinin meme kanserinin
klinik durumunu izlemek için daha yararlı biyobelirteçler olabileceği ve dolayısıyla bu biyobelirteçlerin meme kanserinin patogenezinin aydınlatılmasına da katkı sağlayabileceği kanısındadırlar (Feng ve ark 2012).

SOD aktivite sonuçlarına bakacak olursak; kontrol grubu ile oleuropein, vitamin D ve kombinasyon tedavi grupları arasında istatistiksel olarak anlamli fark vardır (p<0,05). Oleuropein tedavi grubu ile vitamin D ve kombinasyon tedavi grupları arasında istatistiksel olarak anlamli fark vardır (p<0,05). Oleuropein tedavisi tek başına hücrede SOD aktivitesini azaltmıştır. Vitamin D tedavisi ise SOD aktivitesini anlamli ölçüde artırılmıştır (p<0,05). Kombinasyon tedavisi ise vitamin D tedavi grubunun etkisini azaltmıştır. Oleuropeinin güçlü antioksidan etkisiolsonmasına rağmen hücrede oleuropein tedavisi SOD miktarını azaltmıştır. Yapılan çalışmalarda bazı kanser tedavilerinde SOD artış gösterebilmektedir. SOD, hücresel antioksidan savunmanın başlangıç çizgisidir. İlk olarak SOD, sonra GPx aktive olur. SOD enizimi yapısında bulunan metal ioniylarına göre prokaryotlarda Mn-SOD ve Fe-SOD; ökaryotlarda ise Mn-SOD, CuZn-SOD ve ECSOD formlarında bulunur. Bizim çalışmada total SOD aktivitesine bakıldı. Tüm bu formların mekanizmaları farklıdır. Hücreye oleuropeinin etkisi bu formlardan biri üzerinden olabilir, ya da oleuropeinin antioksidan etkisi SOD üzerinden değil de GPx üzerinden olabileceği düşündürmektedir. D vitamini, glutatyon, glutatyon peroksidad ve süperoksid dismutaz dahil olmak üzere antioksidan savunma sistemine dahil olan birkaç molekülün ekspresyonunu indükler ve NADPH oksidaz ekspresyonunu baskılar (Mokhtari ve ark, 2017). Buna paralel olarak D vitamini tedavisi, SOD aktivitesini anlamli ölçüde artırılmıştır (p<0,05). Yapılan bir çalışmada 1,25(OH)2D3’ün prostat epitel hücreleri ve LNCaP hücrelerinde SOD aktivitesini indüklediği saptanmıştır (Pehl ve ark, 2004; Lambert ve ark, 2006). Bu çalışma, bizim bulgumuzu teyit etmektedir.

GPx sonuçlarına bakacak olursak; oleuropein tedavisi, vitamin D ve kombinasyon tedavisine göre GPx’i anlamli ölçüde artırılmıştır. Vitamin D tedavisi ile kombinasyon tedavisi arasında istatistiksel olarak anlamli fark yoktur (p>0,05). Buradan anlaşılacağı gibi, sadece oleuropein tedavisinin GPx’i artırduğu gözlenmiştir. Kombinasyon tedavisi ise hücrede GPx aktivitesini bir şekilde anlamli ölçüde düşürmüştür (p<0,05). Bu sonucu göre oleuropeinin, hücrede oluşan oksidatif strese karşı oluşan antioksidan savunma sistemi nedeniyle meme kanseri hücre hattı üzerinde güçlü bir antioksidan etki gösterdiğini, kombinasyon tedavisinin ise güçlü bir sinerjik antioksidan etki göstermesi sebebiyle
meme kanseri hücre hattı strese girmeden aniden apoptoza (ölümü) götürdüğini, bu sebeple hücrelerde GPx aktivitesinin azaldığını söyleyebiliriz.

MDA sonuçlarına bakacak olursak; oleuropein ve vitamin D tedavilerinin kontrol grubuna göre MDA miktarını artırdığı gözlemlenmiştir (p<0,05). Ancak, kontrol grubu ile kombinasyon tedavi grubu arasında istatistiksel olarak anlamlı fark bulunmamıştır (p>0,05). Hücre, oleuropein ve vitamin D tedavisini aldıktan sonra oksidatif strese girerken (ölürenken) lipid peroksidasyonunu ciddi oranda arttırmış olabilir. Dolayısıyla hücre, strese girerken MDA’yı da artırmış olabileceği düşündüğümüzü.

NO sonuçlarına bakacak olursak; kontrol grubu ile olenuropein ve kombinasyon tedavi grupları arasında anlamlı bir fark saptanmamıştır (p>0,05). Fakat vitamin D tedavisi ile diğer tedavi grupları arasında oldukça anlamlı fark saptanmıştır (p<0,005). Vitamin D tedavisinin total NO miktarını anlamlı seviyede artırdığı saptanmıştır. Kanserli hücrelerde düşük NO, tümör büyümesini desteklerken, yüksek NO seviyesi ise sitotoksik bir etkiye sahip olabilir (Pance 2006). MCF-7 hücre hattına vitamin D tedavisi verildiğinde NO seviyesinin yüksek çıkması, vitamin D tedavisinin MCF-7 hücre hattı üzerinde sitotoksik etki göstermesi ile açıklanabilir. NO aynı zamanda hücrede hormon benzeri görev almaktadır. Hücrede c-AMP’yi uyarır. Böylece apoptoz tetiklenmiş olur (Xu ve ark 2002). Kemopreventif ajanlar, NO üretimini indükler, böylece apoptozu kolaylaştırır. Bu yüzden yakın gelecekte NO, kanser terapotikleri için kullanılma potansiyeli olabilecek bir özellik göstermektedir (Vahora ve ark, 2016).


Özellikle oleuropein ve D vitamini için bulunan IC50 değerleri, ileride yapılacak daha kapsamlı deney hayvanları veya faz çalışmalarına da ışık tutacağı kanaatindeyiz.
6. SONUÇLAR VE ÖNERİLER

Çalışmamızdan elde edilen sonuçları özetleyeceğiz:

1. Meme kanseri hücre hatlarından (MCF-7) oleuropein ve D vitamininin farklı konsantrasyonları uygulanarak doza bağlı bir korelasyon olup olmadığını gözlemlemiştir. Oleuropein ve D vitamininin dozlarına bağlı MCF-7 hücre canlılığında istatistiksel açıdan belirgin bir farkla olup olmadığını değerlendirilmiştir. WST-1 testiyle sitotoksitesi analizleri yapılarak en etkili oleuropein ve vitamin D dozu belirlenmiştir. Oleuropein 24. saatteki baskılayıcı konsantrasyon (IC50) değerinin 256,1 µM, 48. saatteki konsantrasyon (IC50) değerinin 247,5 µM, 72. saatteki konsantrasyon (IC50) değerinin ise 222,5 µM olduğu tespit edilmiştir. D vitamininin 24. saatinde anlamlı bir inhibisyon gözlemlenmemiştir. 48. saatteki baskılayıcı konsantrasyon (IC50) değerinin 2,053 µM, 72. saatteki baskılayıcı konsantrasyon (IC50) değerinin ise 4,083 µM olduğu tespit edilmiştir.


3. MCF-7 meme kanseri hücre hattı üzerine uygulanan oleuropein ve D vitamininin ayrı ayrı ve kombinasyon olarak total oksidan ve antioksidan seviyelerinde değişikliğe neden olup olmadığını değerlendirilmiştir. Böylece total oksidan seviyesinin total antioksidan seviyesine bölünmesiyle bulunan oksidatif stres indeksi hesaplanmıştır. Aynı zamanda SOD ve GPx enzim aktiviteleri, MDA ve NO seviyeleri değerlendirilmiştir. Oleuropein ve D vitaminini tedavisinin MCF-7 hücre hattı üzerinde antioksidan etki gösterdiği, kombinasyon tedavisinin de güçlü bir sinerjistik etki gösterdiğini söyleyebiliriz.

5. Çalışmadan elde edilen turların değerlendirilmesiyle anlamlı sonuçların elde edilmesi, kanser tedavisinde yeni açılmalardan, yeni ilaçların ve tedavi ajanlarının geliştirilmesine katkı sağlayacaktır. Kanser hastalarının tedavisi sürecinde ilaçların yarattığı yan etkiler düşünülündüğünde, özellikle antioksidan etki gösterecek ilaçları ve ilaç kombinasyonlarının değerlendirilmesi ve bu ilaçların rutinde kullanılabilirliği önem teşkil etmektedir.

Çalışmamızdan elde edilecek çıkarımları özetlediğimizde ise;


Literatürde yapılan in vitro çalışmalarla benzer sonuçlar aldığımız bu çalışmamız, hem zaman hem de doz arayışında sitotoksik etkinin arttığı ve apoptozun indüklediğini
KAYNAKLAR


Chan SW, Nguyen PN, Ayele D, Chevalier S, Aprikian A, Chen JZ. Mitochondrial DNA damage is sensitive to exogenous H₂O₂ but independent of cellular ROS production in prostate cancer cells. Mutation Research, 2011, 716, 40-50.


Chiang KC, Chen TC. The anti-cancer actions of vitamin D. Anticancer Agents in Medicinal Chemistry, 2013, 13(1), 126-139.


Hussain S, Ashafaq M. Oxidative stress and anti-oxidants in pre and post operative cases of breast carcinoma. Ahead of print. TJPS-93063.


Kaçar Ö. Çeşitli kanser hücreleri üzerinde sitotoksik etkili paladyum türevlerinin moleküler etki mekanizmalarının aydınlatılması. Doktora Tezi, İstanbul Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, 2016, 156.


Özsoylu S. How long has cholecalciferol been called vitamin D. *Journal Pediatrics Gastroenterol Nutrition*, 1988, 7(2), 303.


Schwartzman R A, Cidloski J A. Apoptosis; the biochemistry and molecular biology of programmed cell death. Endocrine Reviews, 1993, 14, 133-144.


ÖZGEÇMİŞ

Soyadı, Adı : ARI, Murat
Uyruğu : T.C.
Telefon : 0 532 153 1403
E-mail : muratari60@gmail.com
Yabancı Dil : İngilizce

EĞİTİM

<table>
<thead>
<tr>
<th>Derece</th>
<th>Kurum</th>
<th>Mezunyet tarihi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yüksek Lisans</td>
<td>Adnan Menderes Üniversitesi Sağlık Bilimleri Enstitüsü Biyokimya (Veteriner) Anabilim Dalı</td>
<td>2010-2013</td>
</tr>
<tr>
<td>Lisans</td>
<td>Ege Üniversitesi Fen Fakültesi Biyokimya</td>
<td>2002-2007</td>
</tr>
</tbody>
</table>

BURSLAR ve ÖDÜLLER:

İŞ DENEYİMİ

<table>
<thead>
<tr>
<th>Yıl</th>
<th>Yer/Kurum</th>
<th>Üvâname</th>
</tr>
</thead>
<tbody>
<tr>
<td>2010-2012</td>
<td>Adnan Menderes Üniversitesi Uygulama ve Araştırma Hastanesi Parazitoloji Anabilim Dalı</td>
<td>Biyokimyager</td>
</tr>
<tr>
<td>2012-</td>
<td>Adnan Menderes Üniversitesi Uygulama ve Araştırma Hastanesi Satınalma Birimi</td>
<td>Memur</td>
</tr>
</tbody>
</table>

AKADEMİK YAYINLAR

1. MAKALELER


Berksoy EA, Ari HF, Soylu ÖB, Öztürk Ş, **ARI M.** Çelik T, Karakoyun M. A Mediastinal


### 2. KİTAHLAR


### 3. BİLDİRİLER

A) Uluslararası Kongrelerde Yapılan Bildiriler


**Arı HF, Arı M, Meşe T, Yılmazer MM.** Congenital Heart Disease Case with Intracranial Abscess. I. Uluslararası Sağlık Bilimleri Kongresi, 2017.

**Arı M, Ogut S.** Chlorpyrifos-Ethylene and Rose Water Applications Effects of Oxidant and Nonoxidant Parameters in Rat Kidneys - 41st FEBS Congress-Molecular and Systems Biology for a Better Life-Efes/Kuşadası-2016.

B) Ulusal Kongrelerde Yapılan Bildiriler


