SIÇAN DENEYSEL DİYABET MODELİNDE 20 (S) GİNSENOZİT Rg3’ÜN OLASI NÖROPROTEKTİF ETKİSİ

YÜKSEK LİSANS TEZİ

Serap OKTAY

DANIŞMAN
Prof. Dr. Mehmet Dinçer BİLGİN

AYDIN-2015
SIÇAN DENEYSEL DİYABET MODELİNDE 20 (S) GİNSENOZİT Rg3'ÜN OLASı NÖROPROTEKTİF ETKİSİ

YÜKSEK LİSANS TEZİ

Serap OKTAY

DANİŞMAN

Prof. Dr. Mehmet Dinçer BİLGİN

AYDIN-2015
T.C.
ADNAN MENDERES ÜNİVERSİTESİ
SAĞLIK BİLİMLERİ ENSTİTÜSÜ MÜDÜRLÜĞÜNE
AYDIN

Biyofizik Anabilim Dalı Yükseks Lisans öğrencisi Serap OKTAY tarafından hazırlanan “Şıçan Deneysel Diyabet Modelinde 20 (S) Ginsenozit Rg3’un Olası Nöroprotektif Etkisi” başlıklı tez, 10/08/2015 tarihinde yapılan savunma sonucunda aşağıdaki isimleri bulunan jüri üyelerince kabul edilmiştir.

Unvanı, Adı ve Soyadı :  Üniversiteşi :  İmzası:
Prof. Dr. Mehmet Dinçer BİLGİN Adnan Menderes Üniversitesi Tıp Fakültesi Biyofizik Anabilim Dalı
Prof. Dr. Murat PEHLİVAN Ege Üniversitesi Tıp Fakültesi Biyofizik Anabilim Dalı
Yard. Doç. Dr. Özlem Bozkurt Adnan Menderes Üniversitesi Tıp Fakültesi Biyofizik Anabilim Dalı

Jüri üyeleri tarafından kabul edilen bu Yüksek Lisans tezi, Enstitü Yönetim Kurulunun yataş konseyi kararlarıyla tarihinde onaylanmıştır.

Prof. Dr. Ahmet CEYLAN
Enstitü Müdürü
ÖNSÖZ

Diyabet çağımızın en önemli metabolik hastalıklarından biri olup; dünya nüfusunun %2,5-3’ünü etkileyen, morbidite ve mortalitesi yüksek olan bir hastalık. Bu hastalığa kan glikoz düzeyinin uzun süre yüksek düzeyde kalmamasına bağlı olarak kronik komplikasyonlar ortaya çıkmaktadır. Diyabetli hastanın yaşam kalitesini ve mortalitesini etkileyen kronik bir komplikasyon olan diyabetik nöropati, el ve ayaklarda distal uçları tutan, öncelikle duysal takiben de motor sinirleri etkiliyen simetrik bilateral polinöropati şeklinde yaygın olarak görülmektedir. Diyabetik nöropatinin henüz bilinen etkili bir tedavisi yoktur ve kan glikoz düzeyinin iyi kontrolü diyabetik nöropatinin oluşum riskini azaltan tek yoldur. Bu komplikasyonun derecesinin bir miktar azalması bile hastaların klinik tablosunda olumlu sonuç doğurabilmektedir.


Bu çalışmada streptozosin enjeksiyonu ile oluşturan deneySEL diyabet modeli sıçanlarında, 20 (S) ginsenozit Rg3’ün, elektrobiyofiziksel ölçümler ve nosiseptif testler ile diyabetik nöropatiye karşı olan nöroprotektif etkisi gösterilmiştir.

Araştırma, 64583101-2013/062 sayılı 02.09.2013 tarihli ADÜ-HAYEK tarafından onay verilen “Şiçan deneySEL diyabet modelinde 20 (S) ginsenozit Rg3’ün olası nöroprotektiv etkisi” isimli ve TPF-13043 kodlu proje kapsamında, Adnan Menderes Üniversitesi Bilimsel Araştırma Projeleri Biriminin tarafından desteklenerek gerçekleştirilmiştir.
İÇİNDEKİLER

ÖNSÖZ ................................................................................................. iii
İÇİNDEKİLER ....................................................................................... iv
SİMGELE R VE KISALTMALAR DİZİNİ .................................................. vi
ÇİZELGELER DİZİNİ ......................................................................... vii
ŞEKİLLER DİZİNİ ............................................................................... viii
1. GİRİŞ .............................................................................................. 1
  1.1. Diabetes Mellitus ......................................................................... 1
    1.1.1. Diyabetin Sınıflandırılması ...................................................... 2
  1.2. Diyabetin Komplikasyonları ....................................................... 4
    1.2.1. Akut Komplikasyonlar ............................................................ 4
    1.2.2. Kronik Komplikasyonlar ........................................................ 6
  1.3. Diyabetik Nöropati ...................................................................... 8
    1.3.1. Diyabetik Nöropati Risk Faktörleri .......................................... 9
    1.3.2. Diyabetik Nöropati Patogenezı ................................................. 10
    1.3.3. Diyabetik Nöropati sınıflaması .................................................. 12
    1.3.4. Diyabetik Nöropati Tedavisi ...................................................... 13
    1.3.4.1. Nöroprotektif Ajanlar .......................................................... 14
  1.4. Ginsenozit .................................................................................. 15
    1.4.1. Türleri ve Yapısı ..................................................................... 15
    1.4.2. Klinik kullanım ....................................................................... 16
  2. GERÇ-YÖNTEM ............................................................................. 19
    2.1. Denekler .................................................................................. 19
    2.1.1. Deney ortamı ......................................................................... 19
    2.1.2. Diyabet oluşturma .................................................................. 19
    2.1.3. Deney grupları ....................................................................... 20
    2.1.4. Deneyden çıkarılma kriterleri .................................................. 20
    2.2. Ginsenozitin hazırlanması ve deneklere uygulanması ................. 20
    2.3. Deney sırasında ve sonunda ölçülecek parametreler ................. 21
    2.4. Nosiseptif Testler ..................................................................... 21
    2.4.1. Hot Plate Testi ...................................................................... 21
    2.4.2. Tail Flick Testi ..................................................................... 22
2.5. Elektrobiyofiziksel ölçümler: in vivo Elektromiyografi ................................. 22
2.6. İstatistiksel İnceleme .................................................................................. 23
3. BULGULAR ..................................................................................................... 24
3.1. Deney hayvanlarına ait bilgiler .................................................................. 24
3.2. Canlı ağırlık değerleri ............................................................................... 24
3.3. Kan Şekeri değerleri .................................................................................. 25
3.4. Nöral yanıtların nosiseptif testler ile değerlendirilmesi .............................. 26
3.4.1. Hot Plate testi ....................................................................................... 26
3.4.2. Tail Flick testi ....................................................................................... 28
3.5. Elektrobiyofiziksel ölçümler ................................................................. 29
3.5.1. Distal latans ......................................................................................... 29
3.5.2. Sinir İleti Hızı ..................................................................................... 30
4. TARTIŞMA .................................................................................................... 32
5. SONUÇ ............................................................................................................ 37
ÖZET ..................................................................................................................... 38
SUMMARY .......................................................................................................... 39
KAYNAKÇA ......................................................................................................... 40
ÖZGEÇMİŞ .......................................................................................................... 49
TEŞEKKÜR .......................................................................................................... 50
SİMGELER VE KISALTMALAR

AKŞ : Açlık kan şekeri
ADA : Amerikan Diyabet Cemiyeti (American Diabetes Association)
AGE : İleri glikolizasyon ürünleri
DAG : Diaçilgliserol
DNP : diyabetik nöropati
eNOS : Epitel nitrik oksit sentetaz-3
Fr-6-P : Fruktoz 6-fosfat
GLUT 4 : Glikoz Taşıyıcısı-4
HbA1c : Hemoglobin A1c
IDF : Uluslararası Diyabet Federasyonu
PAI-1 : Plazminojen aktivator inhibitoru-1
PKC : Protein kinaz C
ROS : Reaktif oksijen türleri
STZ : Streptozosin
TKŞ : Tokluk kan şekeri
ÇIZELGELER DİZİNİ
Çizelge 1.1. Diyabet tanı kriterleri ............................................................................................................. 2
Çizelge 1.2. Tip 1 ve Tip 2 Diyabet Farklılıkları .......................................................................................... 2
Çizelge 1.3. HbA1c düzeylerine göre ortalama glikoz değerleri ................................................................. 4
Çizelge 1.4. ADA ve IDF göre HbA1c, AKŞ ve TKŞ için tedavi hedefleri ................................................. 14
Çizelge 1.5. Deney gruplarına ait vücut ağırlığından haftalık değişim değerleri................................. 25
Çizelge 1.6. Tedavi başlangıcında ve sonunda ölçülen kan şekeri değerleri ........................................... 26
Çizelge 1.7. Üçüncü ve dördüncü hafta hot plate testi latans değerleri................................................... 27
Çizelge 1.8. Üçüncü ve dördüncü hafta tail flick testi latans değerleri .................................................... 29
Çizelge 1.9. Sol ve sağ siyatik sinirdeki distal latans değerleri................................................................. 30
Çizelge 1.10. Sol ve sağ siyatik sinir ileti hızı değerleri ............................................................................. 31
ŞEKİLLER DİZİNİ

Şekil 1.1. Hiperglisemi sonucunda kompleksyonların oluşum mekanizması ...................... 9

Şekil 1.2. Periferik nöral sinir yapısı ......................................................................................... 10

Şekil 1.3. 20 (S)-Ginsenozit Rg3’ün kimyasal yapısı ................................................................. 16

Şekil 2.1. Siçanlarda (A) oral gavaj uygulaması, (B) hot plate uygulaması, (C) tail flick uygulaması (D) sinir iletim hızı ve distal latans ölçüm düzeneği ................................. 23

Şekil 3.1. Deney gruplarındaki siçanlara ait vücut ağırlığında haftalık değişim değerleri .......................................................................................................................... 24

Şekil 3.2. Deney başlangıcında ve sonunda ölçülen kan şekeri değerleri ....................... 26

Şekil 3.3. Deneyin üçüncü hafta ve dördüncü hafta sonunda hot plate testi ile ölçülen latans değerleri ........................................................................................................... 27

Şekil 3.4. Deneyin üçüncü hafta ve dördüncü hafta sonunda tail flick testi ile ölçülen latans değerleri. ...................................................................................................................... 28

Şekil 3.5. Siçanların siyatik sinirlerinden deney sonunda elektrofiziksel olarak ölçülen distal latans değerleri. ........................................................................................................ 30

Şekil 3.6. Siçanların siyatik sinirlerinden deney sonunda elektrofiziksel olarak ölçülen sinir ileti hızı ölçümleri değerleri................................................................. 31
1. GİRİŞ

1.1. Diabetes Mellitus


Her geçen yıl artan diyabet hastası sayısı ile paralel olarak sağlık harcamalarında da bir artış olmaktadır. Bu nedenle dolayı, diyabet tedavisi için daha ekonomik ve verimli alternatiflere ihtiyaç duyulmaktadır (Parildar ve ark 2011).

Diyabetik bireylerde hiperglisemi, akut ve kronik dönemde çeşitli organ ve dokularda ciddi hasarlara ve yetmezliklere yol açmaktadır. Kronik hiperglisemide özellikle göz, böbrek, sinirler, kalp ve kan damarlarında mikrovasküler ve makrovasküler komplikasyonlara bağlı olarak değişiklikler oluşmaktadır (Kikkawa 2000).

Diyabet, insülinin etkisi ve/veya salınımındaki tam ya da kısmi yetersizlik ile ilişkili olarak karbonhidrat, yağ ve protein metabolizmasında bozukluklar yol açan, hiperglisemi ile seyreden metabolizma hastalığıdır. Karakteristik semptomları; aşırı susama, aşırı su içme, aşırı idrara çıkma, kaşıntı ve başka şekilde açıklanamayan kilo kaybı olarak belirtilmektedir (ADA 2014).

Türkiye Endokrinoloji ve Metabolizma Derneği tarafından diyabet tanı kriterlerini Çizelge 1.1’de bildirmiştir.
Çizelge 1.1. Diyabet tanı kriterleri (Türkiye Endokrinoloji ve Metabolizma Derneği, 2010)

<table>
<thead>
<tr>
<th>Normal kan şekeri değerleri</th>
<th>Açlık kan şekeri</th>
<th>Tokluk kan şekeri</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diyabetli bireylerdeki değerleri</td>
<td>Rastgele glikoz+Diyabet semptomları</td>
<td>≥200</td>
</tr>
<tr>
<td></td>
<td>Açlık plazma glikozu (en az 8 saatlik açlığ़ı takiben)</td>
<td>≥126</td>
</tr>
<tr>
<td></td>
<td>Oral glikoz tolerans testinde 2. saat plazma glukozu</td>
<td>≥200</td>
</tr>
<tr>
<td>Bozulmuş glikoz toleransı</td>
<td>Oral glikoz tolerans testinde 2. saat plazma glukozu</td>
<td>140-199</td>
</tr>
<tr>
<td>Bozulmuş açlık glikozu</td>
<td>Açlık plazma glikozu (en az 8 saatlik açığı takiben)</td>
<td>100-125</td>
</tr>
</tbody>
</table>

HbA1c (glikozillenmiş hemoglobin) son 2-3 aydaki glikoz düzeylerinin ortalamasını gösteren iyi bir kontrol parametresidir (bu süre eritrosit ömrü ile ilgilidir). Normal kişilerde HbA1c %4,0-6,0 arasında değişmektedir. Eğer HbA1c %10'un üzerindeki değerlerde ise bu kan glikoz düzeyinin çok kötü kontrolünü gösterir. HbA1c’nin komplikasyonlarla ilişkili olup düzeyindeki azalma komplikasyonların azalmasına yol açmaktadır. HbA1c değerlerine göre hastaların ortalama glikoz değerleri hesaplanmaktadır (Çizelge 1.2).

Çizelge 1.2. HbA1c düzeylerine göre ortalama glikoz değerleri

<table>
<thead>
<tr>
<th>HbA1c (%)</th>
<th>Ortalama plazma glikozu</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mg/dl</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
</tr>
<tr>
<td>6</td>
<td>135</td>
</tr>
<tr>
<td>7</td>
<td>170</td>
</tr>
<tr>
<td>8</td>
<td>205</td>
</tr>
<tr>
<td>9</td>
<td>240</td>
</tr>
<tr>
<td>10</td>
<td>275</td>
</tr>
</tbody>
</table>

1.1.1. Diyabetin Sınıflandırılması


Tip 1 diyabet insülin bağımlı diyabet veya jüvenil diyabet olarak da adlandırılır. Tüm diyabetlilerin sadece %5–10’nunu kapsamaktadır. Tip 1 diyabet insülin eksikliği ile karakterizedir. İnsülin sekresyonundan sorumlu olan pankreas beta-hücrelerindeki major harabiyet sonucu meydana gelir. Beta-hücre yüküm işaretçileri olan anti-insülin antikorları,


Tip 1 ve Tip 2 diyabet arasındaki farklılıklar Çizelge 1.3’de verilmiştir.

Çizelge 1.3. Tip 1 ve Tip 2 Diyabet Farklılıkları (ADA 2014)

<table>
<thead>
<tr>
<th>Özellik</th>
<th>Tip I Diyabet</th>
<th>Tip II Diyabet</th>
</tr>
</thead>
<tbody>
<tr>
<td>Başlangıç yaşısı</td>
<td>Genellikle &lt;30 yaş</td>
<td>Genellikle &gt;30 yaş</td>
</tr>
<tr>
<td>Başlangıç şekli</td>
<td>Genellikle ani</td>
<td>Sinsi</td>
</tr>
<tr>
<td>Etyoloji</td>
<td>Otoimmün</td>
<td>Insülin direnci</td>
</tr>
<tr>
<td>Ketoasidoza eğilim</td>
<td>Var</td>
<td>Nadir</td>
</tr>
<tr>
<td>Endojen insülin salgısi</td>
<td>Minimal ya da yok</td>
<td>Yüksek</td>
</tr>
<tr>
<td>Beslenme durumu</td>
<td>Zayıf</td>
<td>Obez ya da normal</td>
</tr>
<tr>
<td>Spesifik HLA antijenleri</td>
<td>Var</td>
<td>Yok</td>
</tr>
<tr>
<td>Pankreas Adacık patolojisi</td>
<td>Beta-hücre kaybı</td>
<td>Normal</td>
</tr>
<tr>
<td>Oral antidiyabetiklere (örn. Sülfo-nilüre) cevap</td>
<td>Yok</td>
<td>Başlangıçta var</td>
</tr>
</tbody>
</table>

1.2. Diyabetin Komplikasyonları


1.2.1. Akut Komplikasyonlar

Diyabetin akut komplikasyonları diyabetik ketoasidoz, hiperozmolar hiperglisemik durum, laktik asidoz ve hipoglissemidir.


Laktik asidoz serum laktat ve hidrojen iyonlarının artmasına bağlı olarak gelişen metabolik asidoz tablosudur. Laktik asidoz komasındaki diyabetik hastalar, genel durumu kötü, hiperventilasyonu olan ve sıklıkla Tip 2 diyabet olan kişilerdir. Hastannın nefesi aseton kokmaz, ketonüri azdır ya da yoktur, plazma bikarbonat düzeyi ve pH düşüktür (pH<7,2

Hipoglisemi insülin ile tedavi edilen diyabetiklerde ve sülfonilüre grubu oral antidiyabetik alanlarda sıklıkla oluşan bir akut dönem komplikasyonudur. Klinikte glikozun 60-70 mg/dl seviyelerde olduğu durumlarda çok az veya hiç semptom oluşmazken, glikozun 40 mg/dl altında olduğunda nörolojik bozukluklar oluşmaktadır. Glikozun 40-70 mg/dl değerindeki hipoglisemi oral karbonhidratlara ile tedavi edilebilmektedir. Hipoglisemi nedeni ile ölüm nadirdir (Holt ve ark 2010).

1.2.2. Kronik Komplikasyonlar

Diyabetin kronik komplikasyonları mikrovasküler ve makrovasküler komplikasyonlar olarak ikiye ayrılır. Mikrovasküler komplikasyonları diyabetik retinopati, diyabetik nefropati ve diyabetik nöropati iken makrovasküler komplikasyonlara ise diyabetik kalp hastalığı, periferik arter hastalığı ve serebrovasküler hastalığı dahil (Stratton ve ark 2000,(groups) and Vinik ve Erbaş 2013).

Diyabetik nefropati; diyabetiklerde uzun süreli hiperglisemiyle oluşan kılcal damar hasarları sonucu yıllarda böbrekte glomerüllerin işlevinin bozulmasıyla oluşan klinik tablodur. İdrar analizlerinde glikoz ve proteinler glomerüllerde tutulmayıp idrar ile atılması sonucu öncelikle aralıklı proteinüri olurken ilerleyen dönemlerde proteinüri kalıcı hale gelir. Başlangıçta diyabetiklerde glomeruler filtrasyon hızı ve renal kan akımı hiçbir histolojik değişiklik olmaksızın artması glomerüler hipertrofi ve renal büyüme şeklinde ilerleyerek glomerulosikleroz ile sonuçlanır (Susztak ve ark 2006, Lim 2014). Diyabetik nefropatide böbrekelere bozukluk ilerlediğinde, hiperüremi, yüksek kan basıncı, vücutta ve özellikle ayaklarda ödem, azalmış idrar miktarı ile oluşan böbrek yetmezliği tablosu sonucu hasta hemodiyaliz ile yaşamını sürdürmek zorunda kalmaktadır (Uludağ 2010, Lim 2014).

Diyabetteki makrovasküler komplikasyonlar kalpte, arterlerde ve beyinde görülmektedir.


Periferik arter hastalığı alt ekstremitelerde arterlerin tikanmasıyla karakterize olan ve çoğu hastada asemptomatik olan bir klinik tablodur. Bununla birlikte ciddi iskemi sonucu iskemik ülserasyonlar ve ekstremite kaybına yol açabilir. Diyabetiklerde ampütasyon riskini artıran bir durumdur. HbA1c’deki % 1’lik artış periferik arter


1.3. Diyabetik Nöropati (DNP)

Diyabetik nöropati, uzun süreli Tip I veya Tip II diyabet seyri sırasında periferik sinir sisteminde hasar oluşmasıdır. Hastalarda hiç bir belirti göstermediği gibi, el ve ayaklarda ağrı, uyuşma, işgelenme belirtilerine neden olabilir. İlerlemiş vakalarda kaslarda güçsüzlük, dokularda beslenme bozuklukları, ciltte renk değişikliklerine neden olabilir. Diyabetik nöropati kol bacak gibi uzuvaları etkilediği gibi, barsak, üriner, seksüel fonksiyonlar, kalp gibi iç organ ve sistemleri de etkileyebilir (Verrotti ve ark 2014).

Diyabetik nöropati yüksek morbidite ve mortalite ile seyreden ve diyabetik hastaların yaşam kalitesini azaltan önemli bir komplikasyondur. DNP prevalansı % 10-90 arasında değişen oranlarda, insidans ise yılda yaklaşık % 2 olarak bildirilmektedir (Vinik ve Erbaş 2013). DNP proksimal ve distal sinirleri ve duyu, motor veya otonom sinirleri farklı şekilde etkileyerek oldukça heterojen bir klinik tablo gelişirmektedir. Periferik nöral sinir yapısı Şekil 1.1’de görülmektedir. DNP’de kalın liflerin (Aα ve Bβ) etkilenmesi sonucunda güçsüzlük, ataksi ile vibrasyon ve pozisyon duyusunda azalma oluşanken ince liflerin (C lifleri ve Aδ) etkilenmesi sonucunda da disestazi, hiperestezi, ısı duyusunda azalma ve otonom fonksiyon bozuklukları gelişmektedir (Vinik ve Erbaş 2013).
Periferik nöropati tanısı temelde fizik muayene ve sinir ileti çalışmalarıyla konulmaktadır. Elektronöromiyografi ile DNP’in fokal nöropati, radikülopati ve tuzak nöropatilerin ayıracı tanımlarında kullanılmaktadır (Shah 2003). Ayrıca diyabetik hastaların yaklaşık %10’unda vitamin imbalansı, hipotiroidizm ve malnütrisyon gibi başka nedenlerle açıklanabilen nöropati de oluşabilmektedir (Crespi 2006).


1.3.1. Diyabetik Nöropati Risk Faktörleri

Hipergliseminin derecesi ve süresi ile diyabetik nöropati gelişmesi arasındaki yakın ilişki bulunmaktadır. Diyabet kontrolü ile nöropati gelişiminin önlenebilmesi, glikoz ve insüline bağlı metabolik faktörlerin nöropati gelişiminde önemli rol oynadığını göstermektedir. Hipergliseminin şiddeti nöropati gelişimi için en önemli risk faktörüdür.

1.3.2. Diyabetik Nöropati Patogenezi


![Diagram](image)

Şekil 1.2. Hiperglisemi sonucunda komplikasyonların oluşum mekanizması (Ceriello 2003) (AGE: İleri glikolizasyon son ürünleri; DAG: Diaçilgliserol; PAI-1: Plazminojen aktivator inhibitörü 1; PKC: Protein kinaz C; Fr-6-P: Fruktoz 6-fosfat; ROS: Reaktif oksijen tüpleri; eNOS: Epitel nitrik oksit sentetaz).
DNP patogenezinde birlikte rol aldığı düşünülen mekanizmalar:


- Protein kinaz C (PKC) yolaçının aktivasyonu: Hiperglisemi dialğliserol sentezini arttırarak PKC aktivasyonunu artırmaktadır. PKC aktivasyonu diyabetin vasküler komplikasyonlarının patarızolojisinde rol oynayan vasküler geçirgenlik ve kontraktilitenin düzenlenmesinde, endotelyal hücre aktivasyonu ve vazokontraksiyonda, ekstraselüler matriks sentezi ve turnoverinde, anormal anjiogenezde, lökosit
adezyonunda, anormal büyüme faktörü sinyalinde, anormal hücre büyümesi ve anjiogenezde rol oynamaktadır (Inoguchi ve ark 2002).


- Sinir büyüme faktörü düzeyinin azalması: Diyabetlilerde sinir büyüme faktörü düzeyinin azalması sonucu hedef dokulardan sinir hücre gövdesine retrograd aksonal transportun bozulmaktadır (Yagihashi 2015).


1.3.3. **Diyabetik Nöropati sınıflaması**

Diyabetik nöropati iki grupta incelenmektedir: sensorimotor ve otonomik nöropati.

A) Sensorimotor nöropati: Diyabetik nöropatinin en sık görülen tipidir. Tip 2 diyabette daha sık görülen DNP sıkılkla bilateral ve simetriktilir. Çok yavaş ilerleyen ve uzun süre asemptomatik ve sınısi kalan bir nöropati tipidir. Sinir iletim çalışmaları ile polinöropati varlığını tespit edilebilir. Öncelikle miyelinsiz ve ince miyelinli sinir liflerini etkilemektedir. İnce lif fonksiyonları standart elektrofizyolojik yöntemlerle saptanamaz. En sık karşılaşılan belirtiler bacaklarda, distallerde belirgin karınçalanma, soğukluk hissi, ağrı


1.3.4. Diyabetik Nöropati Tedavisi

Diyabetik nöropatiye bağlı klinik tabloyu düzeltici/azaltıcı ajanlara yönelik çalışmalar giderek artmaktadır. DNP tedavi ve profilaksisinde çeşitli ajanların nöroprotektif etkisinin araştırılması, DNP mekanizması araştırmaları henüz tam olarak sonuçlandırılmıştır. Poliyol yolunun aktivasyonu, vasküler disfonksiyon, lipit metabolizmasının hasarı, bozulmuş nörotrofizm, oksidatif stres, genetik etki gibi birçok faktörün DNP patogenezinde rol oynadığı bildirilmiştir (Börü ve ark 2004).


Çizelge 1.4. ADA ve IDF göre HbA1c, AKŞ ve TKŞ için tedavi hedefleri

<table>
<thead>
<tr>
<th>Parametre</th>
<th>Normal Düzey</th>
<th>ADA Hedefi</th>
<th>IDF Hedefi</th>
</tr>
</thead>
<tbody>
<tr>
<td>AKŞ, mg /dL (mmol/L)</td>
<td>&lt; 110 (6.1)</td>
<td>90-130 (5.0-7.2)</td>
<td>&lt; 110 (&lt; 6.1)</td>
</tr>
<tr>
<td>TKŞ, mg /dL (mmol/L)</td>
<td>&lt; 140 (7.8)</td>
<td>&lt; 180 (&lt;10.0)</td>
<td>&lt; 145 (&lt; 8.1)</td>
</tr>
<tr>
<td>HbA1c</td>
<td>4%-6%</td>
<td>&lt; 7%</td>
<td>&lt; 6.5%</td>
</tr>
</tbody>
</table>

1.3.4.1. Nöroprotektif Ajanlar

1.4. Ginsenozit

1.4.1. Türleri ve Yapısı


Çin tıbbında, ginseng enerji sağlayıcı genel bir tonik olarak kullanılır. Ginsengin çoğu etkilerinden sorumlu olan bileşikler ginsenozitler (panaxsozitler)’dir. Triterpenik saponin yapısındaki ginsenozitler bitkinin kökünde % 2-3 oranında bulunur. Başlıcaları Rg1, Rc, Rd, Rb1, Rb2 ve Rb0 olarak isimlendirilmiştir. Bitki ginsenosit adı verilen triterpenik saponositler, panaxsozidesitler, panaksatnol, D grubu vitaminler taşımaktadır (Luchtefeld ve ark 2004). Ginsenozitler panax türlerine özgü maddelerdir çok küçük miktarlarda var olan bu maddelerin ginsengin etkilerinin çoğunun sorumlu olduğu bildirilmiştir (Attele ve ark 1999). Ginsenozitler dokularda etkilerini değişik mekanizmalarla gösterirler ve ginsenozidlerin temel yapısı birbirine benzer, bu temel yapısı 4 halkada düzenli bir şekilde yerleşmiş 17 karbon atomu ile bir çekirdek içerir. Her bir ginsenozitin biyolojik karakteri C-3 ve C-6’ya glikozitik bağ ile bağlanmış şeker sayısı ve pozisyonuna ilişkilidir (Byun ve ark 1997). Ginsenozitler: panaxadiol grup (Rb1, Rb2, Rb3, Rc, Rd, Rg3, Rh2, Rs1), panaxatriol grup (Re, Rf, Rg1, Rg2, Rh1) ve oleanolik asit grup (Ro) olmak üzere üç kategori ile ele alınmaktadırlar. Ginsenozit yapıları Şekil 1.3 de görülmektedir (Luchtefeld ve ark 2004).
Şekil 1.3. Ginsenozit yapıları (Luchtefeld ve ark 2004).

**1.4.2. Klinik kullanım**

Ginseng’in farmakolojik etkileri ginsenozitler tarafından belirlenmektedir ve ginsenozitin kanserden korunmada, diyabette, yaşlılıkta, yaşlılık belirtilerini azaltmada, kısırlık tedavisinde, HIV tedavisinde, güç ve enerji toplama ve enfeksiyona karşı direnç artırmada etkili olduğu bildirilmektedir (Peng ve ark 2012).

Ginseng ürünleri genellikle homeostazisi korumak ve vücudun fiziksel, kimyasal ve biyolojik her türlü olumsuz yönde etkileyen faktörlerle karşı desteklemek amacıyla kullanılan bir tonik ve adaptojen olarak kabul edilmektedir (Seo ve ark 2008). Ginsengin bu tonik ve adaptojenik etkilerinin yaşanma sürecinin olumsuz etkilerini azalttığı, sağlıklı bireylerde fiziksel performansı ve genel zindelliği artırdığı, stresle ve hastalıklara karşı vücudun fonksiyonlarını güçlendirdikten vücudun desteklediği bildirilmektedir (Nocerino ve ark 2000).

Ginseng Çin Tıbbında Tip 2 diyabet tedavisinde antidiyabetik olarak kullanılan bitkisel bir ajandır ve moleküler mekanizması tam olarak açıklanamamış olsa da antihiper-glisemik etkisi birçok çalışmada bildirilmiştir. Ginsenozitler kan glikoz düzeyini pankreasdan insulin biyosentezini uyarmak süresince ve karaciğerde glikoz taşıyıcılarının
üretimini artırmak süreçtiyle değiştirmektedirler (Park ve ark 2008, Xie ve ark 2015). Ginsenozit Rg3 insulin sinyalini ve glukoz geri alınımını başlıca insulin reseptör substrat-1 ve GLUT4 ekspresyonunu uyararak gerçekleştirdiği belirtilmiştir (Kim ve ark 2009). Ginsenozitin hiperglisemi, obezite ve Tip 2 diyabette koruyucu etkisi olduğu gösterilmiştir (Niu ve ark 2012). Ayrıca sekiz hafta boyunca alınan ginsenozit Rg3‘ün diyabetik retinopati gelişiminde etkili olanoban vascular endotel büyüme faktörü ve tümör nekroz faktör-α ekspresyonunu down-regüle ettiği bildirilmiştir (Sun ve ark 2010). Diyabetik nefropatide de ginsenozit Rg3‘ün diyabetik renal hasara karşı koruyucu etkisi bildirilmiştir (Kang ve ark 2008).

Ginseng’in sinir sistemi üzerinde anti-stres, anksiyolitik ve kognitif özelliği artıran etkileri bulunmaktadır. Ginsenozit Rg2’nin vasküler demansda anti-apoptotik olarak nörolojik performans ve hafıza yeteneklerini iyileştirdiğini bildirilmiştir (Zhang ve ark 2008).

Ginseng’in immunomodülasyon ve anti-inflamatuar etki gösterdiği bildirilmektedir. (Block ve Mead 2003). Ginseng kök saponinlerinin kronik inflamasyona karşı IL-1β ve IL-6 gen ekspresyonu üzerine inhibe edici özellik gösterdiği (Yu ve Li 2000), ginsenozit Rb1 ve Rg1’in ise makrofajlarında tümör nekroz faktör-α üretimini azalttığı bildirilmektedir (Keum ve ark 2003).

Panax ginsengin uzun süre alınımın akciğer, gastrik, karaciğer ve kolorektal kanser insidansında azalmaya yol açtığı ifade edilmektedir (Yun 2001, Qi ve ark 2010). Ginsenozit Rb2’nin göğüs, prostat, karaciğer ve bağrsak kanser türleri dahil hücre proliferasyonunu baskıladığı ileri sürülmektedir. Ginsenozid Rb1, Rb2 ve Rc ’nin tümor anjiogenezisi ve metastazı önlediği öne sürülmektedir (Qi ve ark 2010 ).

Ginseng uygulamasının kan basıncını azalttığını, bu etkinin de ginsengdeki aktif bileşenlerin endotelyal hücrelerde nitrik oksit salınımrına neden olmasından kaynaklandığı ileri sürülmektedir. Ginsenozitlerin süperoksit anyonları gibi oksijen radikalleri tarafından nitrik oksit yıkımı önlemlerinin indirekt olarak vazodilatasyona yol açtığı ifade edilmektedir (Kang ve ark 1995). Kore ginsenginin hipertansiyonlu kişilerde muhtemelen nitrik oksit artışına bağlı olarak vasküler ve endotelyal fonksiyon üzerine yararlı etkiye sahip olduğu belirtilmektedir (Li ve ark 2001). Ginsenozitlere bağlı vazodilatasyonun


Dünyada yaygın olarak görülen metabolik bir hastalık olan diyabetin mortalite açısından en önemli komplikasyonu diyabetik nöropatıdır. Diyabetik nöropati tedavisinde en etkili tedavi halen kan glikoz düzeyinin iyi kontrolüdür.

Bu araştırmanın amacı bir ginseng türevi olan 20 (S) ginsenozit Rg3‘ün oral yolla 5 hafta verilmesinin tek doz intraperitonal streptozosin (50 mg/kg) ile oluşturulan deneySEL diyabet modelinde olası nöroprotektif etkisinin elektrobiyofiziksel yöntemler ve nosisepifik testlerle araştırılmasıdır.
2. GEREC-YÖNTEM

2.1. Denekler

Araştırmada Adnan Menderes Üniversitesi Tıp Fakültesi Deney Hayvanları Üretim Merkezinden temin edilen ortalama 200-250 gram ağırlığında 18 adet erkek Wistar-albino türü sıçan kullanılmıştır.

2.1.1. Deney ortamı

Sıçanlar 22±1ºC çevre sıcaklığı, 12 saat aydınlık 12 saat karanlık siklusunun sağlanıldığı, bağıl nem oranı (%40-50) ve havalandırılması kontrol edilen semiklimatize laboratuvar koşullarında bulundurulmuştur. Tüm hayvanlar, uygulamadan 8-12 saat öncesi kadar yeme ve su içme serbestliğine sahip olmuştur. Suluklar ve yemler günde iki kez kontrol edilmiştir. Cerrahi işlemler öncesinde sıçanlar alışmaları için bir hafta süreyle laboratuvar ortamında tutulmuştur. Tüm deneysel süreç Adnan Menderes Üniversitesi Deney Hayvanları Etik Komitesi’nden alınan 02.09.2013 tarih ve 64583101-2013/062 sayılı izin çerçevesinde gerçekleştirmiştir. Elektrofizyoloji ölçümler 20 mg/kg Ketamine-HCl (Alfamine®) ve 40 mg/kg Ksilazin HCl (Alfazine®) karışımı ile sağlanan anestesi altında gerçekleştirilmiştir.

2.1.2. Diyabet oluşturma

Sıçanlarda diyabet, 0,05 M sitrat tampon (pH=4.5) içinde çözülmüş streptozotosin (STZ)’in tek doz (50 mg/kg) olarak intraperitoneal (i.p) uygulamasıyla oluşturulmuştur. Sham grubu ve diyabetik olmayan grubuna ise 0,05 M sitrat tampon çözeltisi tek doz olarak (i.p) verilmiştir. STZ enjeksiyonunun 6 saat sonrasında sıçanların hipoglisemik şoka girmesini önlemek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrasında ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ verilmesinden 3 gün sonrası ise kandaki glikoz seviyesini ölçmek amacıyla %5 dekstroz solüsyonu verilmiştir. STZ veri...
boyunca devam etmiştir. Tuzlu fosfat tampon (pH 7.4) uygulamasının amacı, tedavi gruplarına yapılan ilaç uygulamasına bağlı stres sürecini eşit kılmaktır (Cooper 2001).

2.1.3. Deney grupları

Araştırmada 18 adet yetişkin erkek Wistar sıçanlar rastgele olarak üç gruba ayrılmıştır;

Kontrol grubu (K): STZ’ nin çözücü olması olan sitrat tampon (0.05 M) i.p olarak tek doz uygulanmış ve 3. günde kan şekerleri 200 mg/dL’nin altında olan sıçanlar normal kabul edilmiş ve bu hayvanlara 5 hafta süreyle diğer gruplarla eşdeğer hacimde tuzlu fosfat tampon (pH 7.4) oral gavaj yoluyla uygulanmıştır.

Diyabetik grup (D): STZ ile diyabetize edildikten sonra AKŞ’leri 250 mg/dL ve üzerinde olan sıçanlara 5 hafta süreyle diğer gruplarla eşdeğer hacimde tuzlu fosfat tampon (pH 7.4) uygulanmıştır.

Diyabet + Ginsenozit grubu (D+Rg3): Diyabetize edildikten sonra AKŞ’ leri 250 mg/dL ve üzerinde olan sıçanlara 5 hafta süreyle 5mg/kg 20 (S) ginsenozit Rg3, oral gavajla uygulanmıştır.

2.1.4. Deneyden çıkarılma kriterleri

Araştırma süresi içinde vücut ağırlığının %15’inden fazlasını kaybeden, dehidratasyon veya enfeksiyon tespit edilen sıçanlar deneyden çıkarılmıştır. Diyabete bağlı kilo kaybı beklenmekte birlikte, bu genellikle %15’in altında olması gerekmektedir.

2.2. Ginsenozitin hazırlanması ve deneklere uygulanması

20 (S) ginsenozit Rg3 deneklere 5 mg/kg olarak oral gavajla verilmiştir. Literatürde Rg3 ajan maddesinin etkili olabilmesi için verilme yönteminin oral gavajla olduğu belirtildiği için ajan madde deneklere bu yöntemle verildi (Kang ve ark 2008, Sun ve Zhou 2010, Niu ve ark 2012). 20 (S) ginsenozit Rg3, 5 mg/kg olarak şekildedir ve günlük olarak oral gavajla sıçanlara verildi (Şekil 2.1.A). Kontrol (K) ve diyabetik (D) gruba ise sadece tuzlu fosfat tampon (pH 7.4) oral gavajla deney gruplarına verilen hacimlerde verilmiştir.
2.3. Deney sırasında ve sonunda ölçülen parametreler


2.4. Nosiseptif Testler


Nosiseptif eşik değer diyabet oluşturulan sonra ikinci haftadan itibaren belirgin olarak düşmektedir ve 4. haftaya kadar yaklaşık olarak aynı kaldığı bildirilmektedir. (Kaeidi ve ark 2011). Bu nedenle diyabet oluşturulan sonra üçüncü hafta itibara ilk ölçüm yapılmıştır.

2.4.1. Hot Plate Testi:

2.4.2. Tail Flick Testi:


2.5. Elektrobiyofiziksel ölçümler: in vivo Elektromiyografi

Beş hafta tedavi uygulanmasını takiben derin anestezi altında (ketamin (50 mg/kg) ve Xylazine (5 mg/kg) ile intraperitoneal anestezi) olan sıçanların siyatik sinirleri orta uyluk düzeyinde yaklaşık 3 cm’lik bir kesi ile ortaya çıkarılmıştır. Biopac MP100 sistemine bağlanan aralarında 1.1 cm sabit uzaklık bulunan in vivo dastre elektrotlar ile uyarı verilmiştir. İlk olarak 1. uyarı elektrodundan uyarı verilmiş ve gastroknemius kasına yerleştirilen kayıt edici çok kullanımlı yüzeyel elektrotlar yardımıyla kastan birleşik aksiyon potansiyeli kayıtlı alınmış ve bilgisayara aktarılmıştır. Aynı şekilde 2. uyarı dastre elektrodu vasıtasıyla siyatik sinire verilmiş ve yine gastroknemius kasından birleşik aksiyon potansiyeli çok kullanımlı yüzeyel elektrotlarla kaydedilmiştir (Şekil 2.1.D). Elde edilen birleşik kas aksiyon potansiyelleri AcqKnowledge Software - Windows/PC (Biopac, ABD) veri analiz sistemi kullanılarak incelendi. Proksimal ve distal latans değerleri hesaplandı.

Bu değerler kullanılarak sinir iletim hızları aşağıdaki formüller yardımıyla hesaplandığı.

\[ \Delta \text{Latans} = \text{Proksimal latans} - \text{distal latans} \]

\[ \Delta \text{Mesafe} = \text{Proksimal mesafe} - \text{distal mesafe: 1,1 cm} \]

Sinir iletim hızı: \( \frac{\Delta \text{Mesafe}}{\Delta \text{Latans}} \) (m/s)
Şekil 2.1. Sıçanlarda (A) oral gavaj uygulaması, (B) hot plate uygulaması, (C) tail flick uygulaması (D) sinir iletim hızı ve distal latans ölçüm düzeneği

2.6. İstatistiksel İnceleme

Elde edilen sayısal değerlerin tümü aritmetik ortalama ± standart hata olarak gösterildi. Gruplara ait tüm verilerin normal dağılım gösterip göstermediği Anderson-Darling normal dağılım testi ile belirlendi (p>0.05). Deney grupları değerleri arasında tüm parametrelerin karşılaştırılmasına, en az iki grup arasında herhangi bir farklılığın olup olmadığını belirlemek için “tek yönlü varyans analizi” (one-way ANOVA) testi uygulandı, en az iki grup arasında anlamlı bir farkın tespit edildiği değerlerde post-hoc test olarak Tukey testi uygulandi. Verilerin değerlendirilmesinde Graphpad prism5 programı kullanıldı. Değerlendirmelerde p<0.05 olan değerler istatistiksel olarak anlamlı kabul edildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işareti ile, ginsenozit tedavisi uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işareti ile gösterildi.
3. BULGULAR

3.1. Deney hayvanlarına ait bilgiler

Araştırmaya 200-250 gram ağırlıkları arasında 18 adet Wistar albino türü erkek sıçan dahil edildi.

3.2. Canlı ağırlık değerleri

Sıçanların bir hafta süren uyum sürecinden sonra, 20 (S) Ginsenozit Rg3 tedavisi uygulaması başladıği ilk günden çalışmanın sonlandığı güne kadar deneklerin her gün ölçülen canlı ağırlıkları haftalık canlı ağırlık değişimi olarak Şekil 3.1 ve Çizelge 1.5’de verilmiştir. STZ ile oluşturulan diyabet vücut ağırlığında azalmalarına neden olurken 20 (S) ginsenozit Rg3 tedavisinin bu azalmaları düzelttiği belirlenmiştir. Tedavi edilen deneklerde haftalık kilo artışı diyabetli olanlara göre anlamlı olarak arttığı saptanmıştır (p<0.05).

Şekil 3.1. Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanlara ait haftalık ağırlık ölçümleri (g). İstatistiksel anlamılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işareti ile, ginsenozit tedavisi uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işareti ile gösterilmiştir.
Çizelge 1.5. Deney gruplarına ait vücut ağırlığında haftalık değişim değerleri

<table>
<thead>
<tr>
<th>Gün</th>
<th>Ağırlık (g)</th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>278.60 ± 5.88</td>
<td>274.00 ± 2.52</td>
<td>247.50 ± 5.26***‡</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>304.33 ± 10.07</td>
<td>269.00 ± 11.40</td>
<td>268.83 ± 8.31</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>323.67 ± 10.79</td>
<td>258.20 ± 9.86**</td>
<td>285.00 ± 9.70*</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>326.40 ± 12.67</td>
<td>253.67 ± 4.44**</td>
<td>294.50 ± 12.81‡</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>330.17 ± 12.72</td>
<td>252.60 ± 4.90***</td>
<td>300.00 ± 6.54‡</td>
<td></td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işaret ile, ginsenozit tedavisi uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işaret ile gösterildi.

3.3. Kan Şekeri değerleri

Sıçanların kan şekeri değerleri tedavi öncesi ve sonrasında iki kez ölçüldü. Tedavinin başlangıcında diyabetik sıçanlarda ve 20 (S) ginsenozit Rg3 uygulanan diyabetik sıçanlarda kan şekeri değerleri kontrol grubuna göre anlamlı olarak yüksek bulundu (p<0.001). Son ölçümlerde ise diyabetik sıçanların kan şekeri değeri kontrol grubuna göre yine yüksekken (p<0.001), 20 (S) Ginsenozit Rg3 uygulanan diyabetik sıçanlarda ise kontrol grubuna göre anlamlı farklılık bulunmadı. Fakat 20 (S) ginsenozit Rg3 uygulanan diyabetik sıçanlarda kan şekeri değerleri diyabetik gruba göre anlamlı derecede düşük olduğu belirlendi (p<0.001) (Çizelge 1.6 ve Şekil 3.2). Sonuçta 5 haftalık oral gavajla 5 mg/kg olarak verilen 20 (S) ginsenozit Rg3 tedavisinin kan şekeri düzeyini tedavi öncesine göre anlamlı olarak azalttığı saptandı.
Çizelge 1.6. Tedavi başlangıcında ve sonunda ölçülen kan şekerini değerleri

<table>
<thead>
<tr>
<th>Kan şekeri (mg/dl)</th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>İlk ölçüm (Tedavi başlangıcı)</td>
<td>130.67 ± 4.71</td>
<td>455.80 ± 17.45***</td>
<td>416.50 ± 60.75***</td>
</tr>
<tr>
<td>Son ölçüm (Tedavi sonu)</td>
<td>118.17 ± 15.84</td>
<td>529.00 ± 32.08***</td>
<td>131.00 ± 13.16***</td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol gruba ile karşılaştırıldığında elde edilen anlamlı değişim * işareti ile, ginsenozit tedavisini uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işareti ile gösterildi.

![Kan şekeri ilk ölçüm](image1.png)

![Kan şekeri son ölçüm](image2.png)

Şekil 3.2. Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanlara ait deney başlangıcında ve sonunda ölçülen kan şekeri değerleri (mg/dl). İstatistiksel anlamlılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Kontrol grubuna göre anlamlılık * işaretleri ile, diyabetik gruba göre anlamlılık ‡ işaretleri ile gösterilmiştir.

3.4. Nöral yanıtların nosisıptif testler ile değerlendirilmesi

3.4.1. Hot Plate testi

Elde edilen latans değerlerinden her sıçana oral gavajla ajan verilmeden önce ve verildikten 30 dakika sonra ölçülen iki latans değerinin ortalaması o sıçan için latans değeri olarak kabul edildi. Her grub için o gruptaki bütün sıçanların latans değerlerinin ortalaması alındı. Ölçümlerin yapıldığı üçüncü ve dördüncü hafta latans değeri Şekil 3.3’de ve Çizelge 1.7’de gösterilmiştir. Hot plate testinde üçüncü haftada latans değerlandırının diyabetik sıçanlarda kontrol grubuna göre istatistiksel olarak yüksek bulunurken (p<0.05) tedavi grubunun diyabetik gruba göre düşük latans değerlerine sahip olduğu gözlendi.
(Şekil 3.3). Dördüncü haftada yapılan ölçümlerde ise 20 (S) ginsenozit Rg3 uygulanan diyabetik sıçanlarda latans değerleri diyabetik gruba göre istatistiksel olarak anlamlı derecede düşük olduğu (p<0.01) ve diyabetik sıçanların latansının ise kontrol grubunda göre istatistiksel olarak anlamlı derecede yüksek olduğu belirlendi (p<0.001). 20 (S) ginsenozit Rg3 uygulamasının diyabetik sıçanlarda hot plate latanslarını anlamlı olarak azaltması ve normal sıçanlardan toplanan verilere yaklaşması, ajanın nosiseptif davranışı karşı koruyuculuğunu göstermiştir (Şekil 3.3 ve Çizelge 1.7).

 Şekil 3.3. Hotplate Testi: Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanlara ait deneyin üçüncü hafta ve dördüncü hafta sonunda hot plate testi ile ölçülen latans (s) değerleri İstatistiksel anlamlılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Kontrol grubuna göre anlamlılık * işaret ile, diyabetik gruba göre anlamlılık ‡ işaret ile gösterilmiştir.

Çizelge 1.7. Üçüncü hafta ve dördüncü hafta hot plate testi latans değerleri

<table>
<thead>
<tr>
<th></th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Üçüncü hafta ölçümü</td>
<td>4.02 ± 0.18</td>
<td>5.00 ± 0.31*</td>
<td>4.24 ± 0.18</td>
</tr>
<tr>
<td>Dördüncü hafta ölçümü</td>
<td>3.98 ± 0.25</td>
<td>5.91 ± 0.26***</td>
<td>4.59 ± 0.25‡‡</td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işaret ile, ginsenozit tedavisi uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işaret ile gösterildi.
3.4.2. Tail Flick testi

Latans değeri kuyruk çekme davranışı gösterme süresi olarak kaydedildi. Tail flick testinde her sıçanda oral gavajla ajan verilmeden önce ve verildikten 30 dakika sonra ölçülen iki latans değerinin ortalaması o sıçan için latans değeri olarak kabul edildi. Her grup için o gruptaki bütün sıçanların latans değerlerinin ortalaması alındı. Ölçümlerin yapıldığı üçüncü ve dördüncü hafta latans değeri Şekil 3.4 ve Çizelge 1.8’de gösterilmiştir. diyabetik sıçanlarda latans değeri üçüncü ve dördüncü hafta kontrol grubuna göre anlamlı olarak yüksek bulundu (p<0.001). 20 (S) ginsenozit Rg3 uygulanan diyabetik sıçanlarda latans değeri diyabetli gruba göre daha düşük belirlendi fakat istatistiksel bir anlamlılık sapılmadı. Sonuçta 20 (S) ginsenozit Rg3 uygulamasının diyabetik sıçanlarda tail flick latanslarını azaltmasının, ajanın nosiseptif davranışa karşı koruyuculuğu olduğunu işaret etmektedir.

Şekil 3.4. Tail Flick Testi: Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanlara ait deneyin üçüncü hafta ve dördüncü hafta sonunda tail flick testi ile ölçülen latans(s) değerleri. İstatistiksel anlamlılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Kontrol grubuna göre anlamlılık * işaretli ile, diyabetik gruba göre anlamlılık ‡ işaretli ile gösterilmiştir.
Çizelge 1.8. Üçüncü hafta ve dördüncü hafta tail flick testi latans değerleri

<table>
<thead>
<tr>
<th>Latans (s)</th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Üçüncü hafta ölçümü</td>
<td>4.19 ± 0.39</td>
<td>7.88 ± 0.85***</td>
<td>6.31 ± 0.40</td>
</tr>
<tr>
<td>Dördüncü hafta ölçümü</td>
<td>4.38 ± 0.52</td>
<td>8.25 ± 0.69***</td>
<td>6.62 ± 0.95</td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işareti ile, ginsenozit tedavisi uygulanan diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işaret ile gösterildi.

3.5. Elektrobiyofiziksel ölçümler

3.5.1. Distal latans

Deney sonunda sıçanlar anestezi altında iken elektrobiyofiziksel ölçümlerde alınan değerlerden hesaplanan sinir iletim hızları değişimleri Şekil 3.5 Çizelge 1.9’da görülmektedir. Bu değişimler incelediğinde; sağ ve sol siyatik sinirden yapılan ölçümlerde birbirine benzer değişimler elde edildiği görüldü. Sol siyatik sinir distal latansının diyabetik sıçanlarda, kontrol grubuna göre anlamlı bir azalma gösterirken (p<0.05) distal latans değerindeki azalma istatistiksel olarak 20 (S) ginsenozit Rg3 uygulanan gruptaki azalma anlamlı bulunmadı (p=0.07). Sağ siyatik sinir distal latansında ise gruplar arasında istatistiksel olarak anlamlı bir farklılık gözlemmedi fakat en kısa distal latans süresi diyabetli sıçanlarda gözlandi (Şekil 3.5). Diyabetik sıçanlar kontrol grubuna göre distal latansda bir azalma göstermekteirler ve 20 (S) ginsenozit Rg3 tedavisiyle bu değerlerin kontrol grubundaki değerlerine yaklaştırılmış belirlendi.
Şekil 3.5. Siyatik sinirdeki distal latanslar: Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanların siyatik sinirlerinden deney sonunda elektrobiyofiziksel olarak ölçülen distal latans (saniye) değerleri. İstatistiksel anlamlılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Kontrol grubuna göre anlamlılık * işareti ile, diyabetik gruba göre anlamlılık ‡ işaretli ile gösterilmiştir.

Çizelge 1.9. Sol ve sağ siyatik sinirdeki distal latans değerleri

<table>
<thead>
<tr>
<th>Distal latans (s)</th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol siyatik sinir</td>
<td>0,00113±0,00003</td>
<td>0,00079±0,00011*</td>
<td>0,00108±0,00005</td>
</tr>
<tr>
<td>Sağ siyatik sinir</td>
<td>0,00125±0,00004</td>
<td>0,00095±0,00008</td>
<td>0,00104±0,00007</td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işaretli ile, ginsenozit tedavisi uygulanmış diabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işaretli ile gösterildi.

3.5.2. Sinir İleti Hızı

Verilerden hesaplanan sinir ileti hızı değişimleri Şekil 3.6 ve Çizelge 1.10 ’da görülmektedir. Hesaplanan sinir ileti hızlarının incelenmesiyle diyabetik sıçanlarda sinir ileti hızının kontrol grubuna göre anlamlı olarak düşük olduğu gözlemdi (p<0.001). 20 (S) ginsenozit Rg3 tedaviyeli diyabetik sıçanlardaki sinir ileti hızı değeri kontrol grubundaki değerlerle yaklaşmış olduğu gözlemdi. Tedavi grubunda ölçülen sinir ileti hızları hem diyabetli gruptan hem de kontrol grubundan anlamlı olarak farklı tespit edildi (Şekil 3.6).
Şekil 3.6. Siyatik sinirdeki ileti hızları: Kontrol (K), diyabet (D) ve 20 (S) ginsenozit Rg3 ile tedavi edilmiş diyabetik (D+Rg3) gruplarındaki sıçanların siyatik sinirlerinden dört hafta sonunda elektrofizyolojik olarak ölçülen sinir ileti hızı ölçümleri (m/s) değerleri. İstatistiksel anlamlılık *p<0.05; **p<0.01; ***p<0.001 şeklinde gösterilmiştir. Kontrol grubuna göre anlamlılık * işareti ile, diyabetik gruba göre anlamlılık ‡ işareti ile gösterilmiştir.

Çizelge 1.10. Sol ve sağ siyatik sinir ileti hızı değişimleri

<table>
<thead>
<tr>
<th>Sinir ileti hızı (m/sn)</th>
<th>Kontrol</th>
<th>Diyabetik</th>
<th>D+Rg3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sol siyatik sinir</td>
<td>58.58 ± 6.67</td>
<td>19.44 ± 1.14***</td>
<td>38.84 ± 2.01**‡</td>
</tr>
<tr>
<td>Sağ siyatik sinir</td>
<td>59.25 ± 6.96</td>
<td>18.70 ± 0.93***</td>
<td>37.63 ± 3.71*‡</td>
</tr>
</tbody>
</table>

Veriler aritmetik ortalama ± standart hata olarak gösterildi. İstatistiksel anlamlılık *p<0.05, ** p<0.01, *** p<0.001 olarak ifade edildi. Tüm gruplara ait veriler kontrol grubu ile karşılaştırıldığında elde edilen anlamlı değişim * işaretile, ginsenozit tedavisi uygulanmış diyabetik gruba ait değerler diyabetik grup değerleri ile karşılaştırıldığında elde edilen anlamlı değişim ise ‡ işaretile gösterildi.
4. TARTIŞMA

Bu tezde STZ ile deneySEL diyabet oluşturulan sanınlarda, Ginsenosit 20 (S) ginsenosit Rg3 maddesinin diyabetik nöropati üzerindeki nöroprotektif etkisi araştırıldı. Diyabetik nöropati oluşan sanınlarda, ağırlık ölçümleri, kan şeker değeri ölçümleri, nosiseptif ve elektrobiyofiziksel testlerin sonuçları mevcut literatürdeki bulguların değerleriyle karşılaştırıldı.


Kan şekerleri değerleri tek doz 50 mg/kg STZ uygulaması ile sanınlarda başlangıçta önemli derecede arttığı ve dolayısıyla sanınların diyabet olduğu gözlandığı (Şekil 3.2). Bu bulgular STZ ile oluşturulan deneySEL diyabet modelini göstermektedir. Tedavi sonunda yapılan kan şeker ölçümlerinde ise diyabetik sanınların kan şeker değeri kontrol grubuna göre yine yüksekken, 20 (S) ginsenosit Rg3 uygulanmış diyabetik sanınların kan şeker seviyelerinde ise kontrol grubuna göre anlamlı bir farklılık bulunmadı. Tedavi uygulanan grubun kan şekerinin diyabetik gruba göre yaklaşık % 75 oranında düştüğü gözlandığı (Şekil 3.2). Chopra ve ark (2010), 45 mg/kg tek doz STZ ile oluşturdukları deneySEL diyabetik nöropati modelinde düşük orta ve yüksek doz sesamol tedavisi tek başına ve insülin tedavisi ile birlikte uygulanmıştır. Yüksek doz sesamol (8 mg/kg) ve insülin tedavisi kan şekerleri değerini diğer gruplara göre daha fazla düşürmüştü. Yüksek doz sesamol tedavi kan şekerleri değerini diğer gruplara göre daha fazla düşürmüştü. Yüksek doz sesamol tedavi kan şekerleri değerini diyabetik gruba göre yaklaşık % 58 oranında düşürürken insülin tedavisi ile birlikte uygulandığında bu düşüşün % 70’e yaklaştığı gözlenmiş. Zangiabadi ve ark (2011), 45 mg/kg tek doz STZ enjeksiyonu ile oluşturulan diyabetik hayvanlara 10 mg/kg melatonin tedavisi uygulamış ve deney sonunda melatonin tedavi grubunda, diyabetli gruba göre kan şeker değerlerinde düşüş olmakla birlikte bu düşüşün yaklaşık % 25 oranından fazla gerçekleşmediğini göstermişlerdir. Yine aynı çalışmada elde edilen kan şekerleri seviyeleri kontrol grubu değerlerine çok fazla

32
yaklaştımadığını belirlemiştir. Prasad ve Muralidhara (2014), 55 mg/kg tek doz STZ ile oluşturuluklarda deneySEL diyabetik nöropatide, yüksek kan şekerini değeri 100mg/kg lik geraniol tedavisinin kan şeker seviyelerini pek etkilememiş olduğunu ve tedavi grubunda, diyabetli gruba göre kan şekerinde düşüş olmakla birlikte bu düşüşün % 13 oranında gerçekleştiğini gözlemliyordu. Aynı çalışmada tedavi grubu kan şeker değerlerinin kontrol grubu değerlerine yaklaştımadığı ve kan şekerini düşürmede geraniol tedavisinin çok etkili olmadığı belirtmiştirler. Joshi ve ark (2013), 55 mg/kg tek doz STZ ile diyabet oluşturulan sıçanlarda diyabetik nöropatide kendi geliştirikleri yöntende nanopartiküllere ayrıştırdıkları 300 mg/kg curcumin etken maddesinin iki haftalık tedavi sonucunda kan şekerini; tedavi grubunda, diyabetli gruba göre % 1 düşüşe neden olduğu göstermiştir. Jain ve ark (2014), 35 mg/kg tek doz STZ oluşturulan deneySEL diyabetik nöropatide yüksek doz 100 mg/kg diosmin tedavisinin kan şeker seviyelerini diyabetli gruba göre % 59 oranında düşürdüğü belirtmişlerdir. Görüldüğü gibi literatürde farklı ajanlarla yapılmış olan araştırmalarda kan şeker seviyelerinde elde edilen düşüşler, bu araştırmada insülin ile birlikte verilmeden uygulanan ginsenosit tedavisinde elde edilen kan şeker seviyesindeki düşüşten daha azdı. Kan şeker diyabet oluşumunun belirlenemez önemli bir ölçütür. Yapılan tedavilerin kan şekerini normal değerlerine yaklaştırmanın hedeflenir. Bu tezde elde edilen sonuçlara göre 20 (S) ginsenosit Rg3 tedavisinin diyabette kan şekerini düşüremeye etkili olduğu gözlandı.

Araştırmamızda kan şekerinin yanı sıra vücut ağırlığındaki değişimler de incelenmiş ve ginsenosit tedavisinin vücut ağırlığı üzerinde etkileri incelenmiştir. 20 (S) ginsenosit Rg3 tedavisinin deneyin son haftası ölülen ağırlık değerlerinin birinci hafta ağırlık değerine oranı gruptar arası karşılaştırıldığında, tedavi grubundaki kilo artışının kontrollere ve diyabetlilere göre daha büyük oranda olduğu ve tedavi ile deneklerin ağırlıklarının kontrol grubu değerlerine yaklaştırıldığı bulunmuştur (Şekil 3.1), ve diyabetik grupta tedavi ile ağırlıkta % 12 artış görüldü. Chopra ve ark (2010), deneySEL diyabetik nöropatide modelinde insülin ile birlikte yüksek doz sesamol (8 mg/kg) tedavisinin ağırlığı düşen sıçanların, vücut ağırlık değerlerini tedavi ile diyabetlilere göre % 10 oranında yükselttiği gösterilmiştir. Zangiabadi ve arkadaşları (2011), 10 mg/kg melatonin ile tedavi edilen diyabetik grupta deney sonunda yapılan ölçümlerde diyabetik gruba göre % 2 oranında ağırlık artışı gözlemlenmiştir. Prasad ve Muralidhara (2014), yaptıkları çalışmada deneySEL diyabetik nöropatide diyabetik hayvanlarda kontrole göre vücut ağırlığında düşüş

Bu tez çalışmasında gerçekleştirdiğim nosiséptif testler kapsamında üçüncü haftada yapılan ölçümlerde, hot plate ve tail flick testlerinde latansların STZ ile oluşturulan diyabetik sıçanlarda, kontrol grubuna göre yüksek olduğu bulundu. Dördüncü haftada yapılan ölçümlerde, hot plate ve tail flick testlerinde latansların 20 (S) ginsenozit Rg3 uygulanan diyabetik sıçanlarda, diyabetik gruba göre düşük olduğu ve diyabetik sıçanların latansının ise kontrol grubuna göre yüksek olduğu gözlandı. Tail flick testinde diyabetik gruba göre 20 (S) ginsenozit Rg3 grubunda latans değeriinde %15 lik bir kısalma; hot plate testinde ise diyabetik gruba göre 20 (S) ginsenozit Rg3 grubunda latans değerinde % 22 oranında kısalma görüldü (Şekil 3.3 ve Şekil 3.4). Zangiabadi ve ark (2011), diyabetik sıçanlarda termal ağrıya karşı yanıt zamanının kontrol grubuna göre arttığını ve 10 mg/kg Melatonin uygulaması ile yanıt sürelerinin kontrol grubu değerlerine yaklaştırıldığını belirtmişlerdir. Benzer sonuçlar tail flick testinde de elde edilmiştir. Tembhurne ve Sakarkar (2011), sıçanlarda deneySEL oluşturulan diyabetik nöropatide 20 mg/kg Fluoxetine tedavisinin tail flick ve hot plate test latanslarını kontrol grubu değerlerine yaklaştırıldığı ve diyabetli sıçanlardaki tedavi ile latans değerlerinde % 30 azalma olduğunu göstermişlerdir. Attia ve ark (2012), beş hafta süresince günlük olarak 100 mg/kg curcumin
ve 10 mg/kg gliklazit tedavisi uygulanan sıçanların hot plate ve tail flick latanslarının diyabetik kontrol grubu ile karşılaştırıldığında tedavi grubu latans değerlerinin kontrol grubu değerlerle yaklaştırığı göstermişlerdir. Benzer sonuçları Joshi ve ark (2013) gerçekleştirirdikleri araştırmanda elde etmiş, iki haftalık 300mg/kg curcumin tedavi uygulaması sonucunda tail flick latansında önemli iyileşmeye neden olduğunu görmüşlerdir. Nadig ve ark (2012), deneysel diyabet oluşturdukları sıçanlarda oluşan diyabetik nöropati için kullandıkları onbeş günlük 400 mg/kg Tinospora cordifolia tedavisi ile 15,75±0,23 olarak ölçülen tail flick latansı testinde diabetik nöropati görünümünde 10±0,70 saniye değerine yakın(xx) belirtmişlerdir. Jain ve ark (2014), diabetik nöropatide 10 hafta 100 mg/kg diosmin tedavisinin 50 mg/kg diosmin tedavisi ile 15,75±0,23 olarak ölçülen tail flick reaksiyon zamanını kontrol grubu değeri olan 10±0,70 saniye değerine yaklaştırığı belirtmişlerdir. Literatürde benzer çalışma bulunmamasına karşın, 20 (S) ginsenozit tedavisi uygulanan diyabetik sıçanların tedavi uygulamayın sıçanlara göre hot plate ve tail flick yanıt zamanlarında sırasıyla % 31 oranında ve %23 oranında kısalma olduğunu göstermişlerdir. Jain ve ark (2014), diabetik nöropatide 10 hafta 100 mg/kg diosmin tedavisinin 50 mg/kg diosmin tedavisi ile 15,75±0,23 olarak ölçülen tail flick reaksiyon zamanını kontrol grubu değeri olan 10±0,70 saniye değerine yaklaştırığı belirtmişlerdir. Literatürde benzer çalışma bulunmamasına karşın, 20 (S) ginsenozit tedavisi uygulanan diyabetik sıçanlarında hot plate ve tail flick latanslarının azaltılmasını nosisseptif davranışa karşı koruyuculuğunun bir göstergesi olarak kabul edilebilir.

Elektrobiyofiziksel çalışmalarla öncelikle kontrol, diyabet, ginsenozit tedavisi uygulanan diyabetik grupları arasında distal latans ortalamaları karşılaştırıldığında kontrol grubunda diyabetik gruba göre azalış olan distal latans değerinin ginsenozit tedavisi ile kontrol grup değerine yaklaştırığını göstermişlerdir. Deney gruplarından hesaplanan sinir ilet hızı değerleri karşılaştırıldığında; diyabetik grubunun sinir ilet hızı 19,07±0,92 m/s olarak, kontrol grubunda ise bu değer 58,91±6,77 m/s olarak belirlenmiştir. 20 (S) ginsenozit Rg3 tedavisi sinir ilet hızı değer ise diyabetik grubun değerinden % 51 oranında artış yaparak bu grupta sinir ilet hızı 38,24±2,82 m/s olarak belirlenmiştir. Bu sonuçla göre tedavinin sinir ilet hızı değerlerini kontrol grubu değerine yaklaştırıldığı gözlemdi (Şekil 3.5 ve Şekil 3.6). Bu durum 20 (S) ginsenozit Rg3 ’ün diyabette nöroprotektif etkisinin olduğunu göstermektedir.
Zangiabadi ve ark (2011), yedi haftalık 10 mg/kg melatonin tedavisi sonunda diyabetik grupta sinir iletim hızının kontrol grubuna göre % 25,6 oranında azaldığını fakat 10 mg/kg melatoninle tedavi edilen diyabetik grupta 6 hafta sonunda kontrol gruba ile motor sinir iletim hızı açısından anlamlı farklılık olmadığını göstermişlerdir. Takata ve ark (2012), diyabetik nöropatide mineralokortikoid reseptör blokajı yapan ajanların motor ve duysusal sinir iletim hızlarının sırasıyla 55,7±1,7 m/s ve 28,6±0,9 m/s olarak, kontrol grubunda sinir ileti hızının sırasıyla 46,8±1,8 m/s, 25,3±0,8 m/s olarak belirlemişlerdir. Aynı çalışmada, kontrol grubu ilete hızına göre diyabetik sıçanlarda ileti hızı % 40 azalmış ve tedavi grubunun sinir ileti hızı diyabetik gruba göre % 36 oranında yükseldiğine göre diyabetik sıçan grupuda sinir ileti hızı % 28 yaklaştığını göstermiştir. Joshi ve ark (2013), ise diyabetik nöropatide iki hafta süreyle 300 mg/kg curcumin uygulamasının, motor sinir ileti hızında diyabetik sıçanlara göre % 50 oranında artış sağlayıp sinir ileti hızını kontrol değerlerine yaklaştırma etkisini belirtmektedir. Wu ve ark (2014), bitkisel ajan puerarin’in diyabetik periferal nöropati üzerinde etkisini ve güvenilirliğini araştırdıkları metaanaliz çalışmalarında puerarin tedavisinin sinir ileti hızı değerlerinin iyileşmesinde etkili olduğunu belirtmiştir. Wattanathorn ve ark (2015), Zea mays ve ginger ekstratlarının diyabetik nöropatideki oksidatif stres üzerine etkilerini inceledikleri çalışmalarında tedavi grubunda, diyabetik sıçanlara göre sinir iletim hızı değerlerinin kontrol grubu değerlerine % 28 yaklaştırıldığını göstermişlerdir. Literatürde görüldüğü gibi STZ ile oluşturulan deneysel diyabet modelinde kontrol grubunun sinir ileti hızına ve distal latans değerlerine göre diyabet grubunun sinir ileti hızı ve distal latans değerlerinde düşme görüldü. Bu tezdeki bulgular benzer araştırmalarda belirtilen bulgularla örtüşmektedir. Elde edilen sonuçlara göre, 20 (S) ginsenozit Rg3 uygulanan tedavi grubunda sinir ileti hızı ve distal latans değerlerinde sırasıyla % 105 ve % 23 oranında artış olmuştur. Bu sonuç 20 (S) ginsenozit Rg3 tedavisinin diyabetik nöropatinin neden olduğu sinir ileti hızı yavaşlamasını tedavi etmede etkin olduğunu belirtmekle ve bu tedavinin nöroprotetif etkisini göstermektedir.
5. SONUÇ

Tek doz 50 mg/kg STZ ile deneysel diyabet oluşturulmuş sıçanlarda, beş hafta oral gavaj ile 5 mg/kg/gün 20 (S) ginsenozit Rg3 verilmesi kan şekerini düşürmede ve diyabetle oluşan ağırlıkları azaltmada etkili olduğu belirlendi. Ayrıca tedavi ile nosispeptif ağrı algısının ölçümünde hot plate ve tail flick latans değerlerinin azalarak normal değerlere yaklaşması ginsenozit tedavisinin diyabetik nöropatide nosispeptif davranışa karşı koruyucu etki yaratığı göstermektedir. Ginsenozit tedavisinin sinir iletiminde diyabetin neden olduğu hasara karşı da koruyucu etki gösterdiği ve sinir iletim hızlarının artması da rol aldığı gözlemdi. Bu tez 20 (S) ginsenozit Rg3 tedavisinin diyabetik nöropatide görülen periferal sinir hasarına karşı potansiyel nöroprotektif etki elde etmek ve diyabetik nöropatiyi engellemek için kullanılabileceğini önermektedir.

20 (S) ginsenozit Rg3 tedavisinin etkilerini daha iyi değerlendirmek için bu araştırmalara ek olarak HbA1c ölçümü, haftalık kan şeker ölçümü, biyokimyasal testler ile oksidatif stres parametrelerinin belirlenmesi, histopatolojik inceleme ile diyabette sinirde oluşan hasarın belirlenmesi gibi ileri görüşü ek çalışmalar gelecekte planlanacaktır.
ÖZET

Ginseng antidiyabetik, anti-inflamatuvar, antioksidan ve antiapoptotik etkilere sahip bir bitkisel ajandır. Ginseng saponin’in aktif bileşeni olan 20 (S) ginsenozit Rg3‘ün, pankreas beta hücrelerinden insulin salgılanmasını artırdığı ve diyabetik böbrek hasarında koruyucu etkiye sahip olduğu bildirilmiştir. Bu çalışmanın amacı deneySEL diyabetik nöropatide 20 (S) ginsenozit Rg3‘ün nöroprotektif etkilerini değerlendirmektir.

Yetişkin erkek Wistar sıçanlar (n=18) rastgele olarak kontrol, tedavi edilmiş diyabetik ve 20 (S) ginsenozit Rg3 ile tedavi edilen diyabetik olarak gruplara ayrılmıştır. Diyabet intraperitonal tek doz streptozotosin (STZ) enjeksiyonuyla (50 mg/kg) oluşturulmuştur ve STZ enjeksiyonundan 3 gün sonra hiperglisemi (>250 mg/dl) olanlar diyabet olarak belirlenmiştir. 20 (S) ginsenozit Rg3 ile tedavi edilen sıçanlara oral gavajla 5 hafta boyunca 5mg/kg/gün 20 (S) ginsenozit Rg3 verilmiştir. Deney gruplarındaki sıçanların vücut ağırlığı günlük takip edilmiştir. Nosiseptif değişimleri belirlemek için tedavinin üçüncü ve dördüncü haftalarında tail flick ve hot plate testleri yapılmıştır. Her iki siyatik sinirden sinir iletim hızı ve distal latans ölçülmüştür. STZ ile oluşturulan diyabet vücut ağırlığında azalmalara neden olurken 20(S) ginsenozit Rg3 tedavisinin bu azalmaları düzelttiği belirlenmiştir. Benzer şekilde ginsenozid tedavisi anlamlı olarak kan glukoz düzeyini tedavi öncesine göre azaltmıştır (p<0.05). Ayrıca 20 (S) ginsenozit Rg3 uygulamasının diyabetik sıçanlarda hem tail flick hem de hot plate latanslarını anlamlı olarak azaltması ajanın nosiseptif davranışa karşı koruyuculuğunu göstermiştir. Diyabetik sıçanlar kontrol grubuna göre hem distal latansda hem de sinir iletim hızında anlamlı bir azalma göstermekteydiler (p<0.001). Bununla birlikte 20 (S) ginsenozit Rg3 tedavişiyile distal latans ve sinir iletim hızı değerleri kontrol grubundaki değerleri yaklaşmıştır.

Bu bulgular 20 (S) ginsenozit Rg3 tedavisinin diyabetik nöropatide olması nöroprotektif etkisi olduğunu belirtmektedir.

Anahtar Kelimeler: Anahtar Kelimeler: 20 (S) ginsenozit Rg3, diyabetik nöropati, sinir iletim hızı, nosiseptif testler.
SUMMARY

Ginseng is an herbal agent that has an antidiabetic, anti-inflammatory, antioxidant, and antiapoptotic activities. 20 (S) ginsenoside Rg3, an active ingredient of ginseng saponins, has been reported to enhance insulin secretion in pancreatic beta cells and to have protective effects on diabetic renal damage. This study aims to evaluate the neuroprotective effects of 20 (S) ginsenoside Rg3 in experimental diabetic neuropathy.

Adult male Wistar rats (n=18) were randomly assigned for control, untreated diabetic and 20(S) ginsenoside Rg3 treated diabetic groups. Diabetes was induced by a single intraperitoneal injection of STZ (50 mg/kg), and 3 days after the STZ injection diabetes was assigned by the presence of hyperglycemia (>250 mg/dl). Rats in 20 (S) ginsenoside Rg3 treated group received a 5mg/kg/day dose of 20 (S) ginsenoside Rg3 by oral gavage for 5 weeks. Body weights of the rats in the study groups were monitored daily. Tail flick and hot plate tests were conducted to record nociceptive changes at 3rd and 4th week of treatment. Nerve conduction velocities and distal latencies were determined in both sciatic nerves.

STZ-induced diabetes caused a decrease in body weight while 20 (S) ginsenoside Rg3 treatment restored this decrement. Moreover, ginsenoside treatment significantly reduced plasma glucose levels compared to pretreatment states (p<0.05). Also 20 (S) ginsenoside Rg3 decreased both tail flick and hot plate latencies significantly in diabetic rats revealing its protection against nociceptive behavior. Diabetic rats showed a significant decrease (p<0.001) in NCV and distal latencies as compared to the control rats. However, NCVs and distal latencies were improved by the treatment of 20 (S) ginsenoside Rg3. In conclusion, these findings highlighted the possible neuroprotective effects of 20 (S) ginsenoside Rg3 treatment on diabetic neuropathy.

Keywords: 20 (S) ginsenoside Rg3, diabetic neuropathy, nerve conduction velocity, nociceptive tests.
KAYNAKÇA


American Diabetes Association. Standards of Medical Care in Diabetes-2014; Diabetes Care Volume 37, Supplement 1, January 2014.


ÖZGEÇMİŞ


Katıldığım Ulusal Kongreler ve Bilimsel Çalıştaylar:

TEŞEKKÜR

Her zaman ilgi ve desteğiyle yanimda hissettigim tezin bütün aşamalarına titizlikle egilen, tezime yol gösterici çok değerli katkıda bulunan mesai dışı vakitlerde dahti vaktini bana ayırabilen, çok kıymetli tez danışman hocam Sayın Prof. Dr. Mehmet Dinçer BİLGİN’e, Sayın Yrd. Doç. Dr. Özlem BOZKURT hoca;

Anabilim dalımız yüksek lisans ve doktora öğrencisi arkadaşlarımı, Uzman Veteriner Hekim Sayın Serdar AKTAŞ’a, Adnan Menderes Üniversitesi deney hayvanları üretim ve deneySEL araştırma labaratuvari çalışanlarına;

İl Milli Eğitim Müdürüm Sayın Pervin TÖRE hoca, okul müdürlerim ve idarecilerime özellikle Sayın Kazım Alp müdürume;

Emekli öğretmen anne ve babam Sayın Hülya OKTAY ve Sayın Yakup OKTAY’a

Kardeşim Fizik öğretmeni Sayın Sevilay OKTAY YILDIRIM’a ve eşi Sayın Oğuz YILDIRIM’a, kardeşim Çocuk sağlığı ve hastalıkları Uzmanı Sayın Dr. Seçil OKTAY EDİZSOY’a ve eşi Sayın Dr. Akay EDİZSOY’a;

yegenlerim Ece YILDIRIM, Tuğçe YILDIRIM ve Egemen Alp EDİZSOY’a;

sonsuz teşekkürlerimi sunarım.

Serap OKTAY