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ABSTRACT 

Soil fertility measures such as cation exchange capacity (CEC) may be used in upgrading soil maps and 

improving their quality. Direct measurement of CEC is costly and laborious. Therefore, indirect estimation of 

CEC via pedotransfer functions may be appropriate and effective.  Several delineations of two consociation map 

units consisting of two soil families (Shahrak series and Chaharmahal series), located in Shahrekord plain, Iran 

were identified. Soil samples were taken from two depths of 0-20 and 30-50 cm and were analyzed in lab for 

several physico-chemical properties. Clay and organic matter percentages as well as moisture content at -1500 

kpa best correlated with CEC.  Pedotransfer functions were successfully developed using regression and neural 

networks. Soil partitioning increased the accuracy and precision of functions. Compared to regression, neural 

network technique resulted in pedotransfer functions with higher R2 and lower RMSE. 
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INTRODUCTION 

There is an increasing demand for reliable large-scale soil data to meet the requirement of 

models for planning of land-use systems, characterization of soil pollution, and prediction of land 

degradation (Mc Bratney et al., 2002). Cation Exchange Capacity (CEC) is among the most important 

soil properties that is required in soil databases (Manrique et al., 1991), and is used as an input in soil 

and environmental models (Keller et al., 2001). Cation Exchange Capacity is the total of the 

exchangeable cations that a soil can hold at a specified pH. Soil components known to CEC are clay 

and organic matter, and to a lesser extent, silt (Martel et al., 1978; Manrique et al., 1991). 

Soil fertility measures such as CEC may be used for upgrading soil maps and improving their quality. 

Simulation models such as the Erosion-Productivity impact calculator (Williams et al., 1989) require 

large amounts of soil physical and chemical data and CEC is one key property used in this issue.  

Although CEC can be measured directly, its measurement is difficult, time consuming and 

expensive especially in the semiarid region of Iran because of the large amounts of calcium carbonate.�

Pedotransfer Functions (PTFs) provide an alternative by estimating CEC from more readily available 

soil data. The term pedotransfer function was coined by Bouma (1989) as translating data we have in 

to what we need. In recent years, several researchers tried to estimate CEC from basic physical and
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chemical soil properties (Breeusma et al., 1986; Manrique et al., 1991; Bell and Keulen, 1995; 

McBratney et al., 2002). In most of these models, CEC is assumed to be a linear function of soil 

organic matter and clay content (Breeusma et al., 1986; McBratney et al., 2002). Results show that 

greater than 50% of the variation in CEC could be explained by the variation in clay and organic C 

content for several New Jersey soils (Drake and Motto, 1982), for some Philippine soils (Sahrawat, 

1983), and for four soils in Mexico (Bell and Keulen, 1995). Only a small improvement was obtained 

by adding pH to the model for four Mexican soils (Bell and Keulen, 1995). In B horizons of a 

toposequence, the amount of fine clay was shown to explain a larger percent of the variation in CEC 

than the total clay content (Wilding and Rutledge, 1996). 

Multiple Linear Regression (MLR) analysis is generally used to find the relevant coefficients 

in the model equations. Often, however, models developed for one region may not give adequate 

estimates for a different region (Wagner et al., 2001). Because the most essential input variables can 

be found automatically using stepwise regression, initially, linear and polynomial regressions were 

applied (Pachepsky and Rawls, 1999). 

A recent approach to model PTFs is the use of artificial neural networks (ANNs) (Schaap et al., 

1998). Artificial neuaral networks have been successfully employed to predict soil hydrological 

properties (Pachepsky and Rawls, 1999; Minasny and McBratney, 2002). A type of ANN known as 

multilayer perceptron (MLP), which uses a back-propagation training algorithm, is usually used for 

generating PTFs  (Schaap et al., 1998; Minasny and McBratney, 2002; Amini et al., 2005). An 

advantage of using ANNs is that no specific type of function needs to be assumed a priori to model the 

relationship between inputs and outputs. The optimum relation that links input data to output data is 

obtained through a training procedure (Schaap et al., 1998). Because of their greater feasibility, ANN 

models are generally expected to be superior to MLR models (Schaap et al., 1998; Minasny et al., 

1999). The drawback of ANNs is that they do not provide an explicit procedure to select the most 

essential PTF input variables (Pachepsky et al., 1996). 

The PTF accuracy is assessed from the correspondence between measured an estimated data 

for the data set from which a PTF has been characterized by various quantitative measures, such as the 

mean error, the standard deviation of the mean error, the mean squared error, determination coefficient 

R2, etc.(Kern,1995; Leenhardt, 1995). Results show that when soils are grouped by similarities in 

origin or properties, accuracy of predictive models has been shown to improve (Pachepsky and Rawls, 

1999). Examples of soil grouping include lithomorphic classes (Franzmeier, 1991), hydraulic-

functional horizons (Wosten et al., 1985), genetic classification (Leenhardt, 1995), texture classes 

(Clapp and Hornbergere, 1978) and numerical soil classification (Williams et al., 1983). Drake and 

Motto (1982) grouped soils by taxonomic order or province. Similarly, Asadu and Akamigbo (1990) 

predicted CEC from organic matter and clay content by grouping the soil based on taxonomic order 
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(Inceptisols, Alfisols, Ultisols, and Oxisols). The U.S. Soil Taxonomy systems (Soil Survey Staff, 

1999) also classifies soils by mineralogical composition at the family level which may be useful in soil 

partitioning to improve both accuracy and reliability of predictive models (Pachepsky and Rawls, 

1999). The objectives of this study were (1) developing of PTFs for CEC using methods of regression 

and neural networks, (2) studying the possibility of upgrading the soil maps by determining the CEC 

for two dominant soil families in soil mapping units in Chaharmahal-va-Bakhtiari province and (3) 

assessing the effect of soil partitioning into families and different layers on the quality of the models.  

MATERIALS and METHODS 

The study area consists of several irrigated lands in Chaharmahal-Va-Bakhtiari province, 

Central Iran (Fig. 1). The soil moisture and temperature regimes of the area are xeric and mesic, 

respectively. One hundred and twenty samples were collected from several delineations of two 

consociation map units consisting of two soil families (Shahrak series and Chaharmahal series) located 

in Shahrekord plain, Central Iran. Dominant soils at two consociation map units are classified as 

follow at family levels:  

1) Fine, Mixed, active, Mesic Typic Calcixerepts 

2) Fine, Carbonatic, Mesic Typic Calcixerepts  

The classification of these soils are similar up to subgroup level but their family was different because 

of difference in mineralogy class.   

 

 

 

 

 

 

 

 

Fig. 1. Location of the study area in Central Iran 

Soil samples were taken from two depths of 0-20 and 30-50 cm and were analyzed in lab for 

several physico-chemical properties� including soil particle size distribution, organic matter, moisture 

content at wilting point at -1500 KPa, pH, calcium carbonate equivalent and cation exchange capacity. 

Statistical analysis and multiple regressions were performed by STATISTICA 6.0 software and neural 

network models were developed by JMP 5.0 software. Prediction models were developed at first for 
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all data without partitioning and then for each family and also surface and subsurface layers. The best 

linear regression models suggested by researchers for each level (each family, each layer and all 

samples) were considered for model developing. 

The MLP algorithm developed in this study is a feed forward back propagation network 

(FFBP) model. This network consists of layers of interconnected non linear processing elements called 

neurons. The architecture of the MLP model is such that the numbers of input and output neurons are 

usually matched to the numbers of input and output elements. The transfer function was selected a 

sigmoidal function that is selected such that it accommodates the nonlinearity of the specific input–

output relationship. Profiler diagram possibility was used to select suitable number of node in the 

hidden layer and avoid under fitting and over fitting.  

The performance of the models was evaluated using the root mean square error (RMSE) and 

the correlation coefficient (R2) between predicted and measured values.�Relative improvement (RI) 

index was used to compare the performance of two models developed from regression and neural 

networks. 

RESULTS and DISCUSSION 

Descriptive Analysis 

The summary statistics of the soil properties for two families are given in Tables 1 and 2.  

Table 1. Summary statistics of soil properties for family one 

Mean of two layers CV% Min� Max ���������������Mean��� 
�������������������

�property� 

Significant 

Level 
Difference � Family Family 

Depth 

Layer 

Surface 

Layer 

 

ns 1.4 39.7 5.7 35.3 17.1 16.4 17.8 %Sand 

ns 3 22.8 27.3 65.4 41.2 39.7 42.7 %Silt 

99% -11.6 21.7 24.6 63.7 39.5 45.3 33.7 %Clay 

99% 0.73 34.7 0.32 2.9 1.4 1.1 1.8 %OM 

ns -0.1 16.6 12.4 27.6 19.2 19.3 19.2 %PWP 

ns -2.9 28.2 12.5 39.0 23.4 25 22.1 %CaCO3 

ns -0.1 2.5 7.2 8.4 7.9 8 7.8 pH 

ns -0.5 39.8 14.7 69.2 36.7 37 36.5 
CEC 

(cmolc kg-1 soil) 

� The negative difference means that quantity of properties in depth layer is greater than surface layer 
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Table 2. Summary statistics of soil properties for family two 

� The negative difference means that quantity of properties in depth layer is greater than surface  layer 

The organic matter content of the soils in the region is usually low, ranging from 0.32 to 2.9% 

and 0.63 to 2.4% for families one and two, respectively with an average of 1%. The coefficient of 

variation (CV) of CEC showed more variability than those of the soil particle size distribution, OM, 

pH and PWP in two families. A mean difference (L=0.99%) was observed for OM and clay contents 

between layers in two families (Tables 1 and 2).�Significant difference between clay content in two 

layers is probably due to more clay in depth layers of each family because of transmission clays from 

epipedon toward endopedon (Arnaud and Septon, 1972). These results were in general agreement with 

those of Nourbakhsh et al. (2002) who obtained significant difference for OM and clay contents 

between two horizons. 

Correlation of Soil Properties 

The linear correlation coefficients between CEC and independent variables are given in Table 3.  

 

 

 

 

 

 

 

 

 

Mean of two layers CV% Min� Max� ���������������Mean��� property 

Significant 

Level 
Difference � Family Family 

Depth 

Layer 

Surface 

Layer 

 

ns 0.1 22.6 11.5 42.6 24.9 24.4 25.4 %Sand 

ns 4.5 15.7 22.0 53.6 39.1 36.9 41.4 %Silt 

99% -7.7 11.3 24.6 49.7 36.7 40.5 32.8 %Clay 

99% 0.7 18 0.63 2.4 1.27 0.94 1.6 %OM 

ns 0.6 13.6 12.4 26.5 19.7 19.4 20.0 %PWP 

ns -8.3 27.3 14.0 45.0 27.1 31.2 23.0 %CaCO3 

ns -0.1 3.6 7.1 8.0 7.7 7.7 7.6 pH 

ns 0.9 54.4 9.7 71.4 31.0 30.56 31.5 
CEC 

(cmolc kg-1 soil) 
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Table 3. Simple linear correlation coefficients (r) between CEC and independent variables 

CaCO3 Silt Sand Clay PWP OM pH 

% 
Partitioning Level 

0.10 -0.15 0.16 -0.30� 0.51� 0.73� 0.53� All Samples 

( No Partitioning) 

0.07 -0.17 0.11 -0.20 0.51� 0.78� 0.58� 
Family one 

0.03 -0.29 0.32 -0.23 0.66� 0.77� 0.89� Surface layer of family 

one 

0.11 -0.01 0.17 -0.16 0.73� 0.80� 0.70� Depth layer of family 

one 

0.02 -0.07 0.19 -0.29 0.53� 0.75� 0.50� Family two 

0.05 -0.03 0.04 -0.21 0.58� 0.76� 0.86� Surface layer of family 

two 

0.00 -0.15 0.31 -0.35 0.81� 0.76� 0.82� Depth layer of family 

two 

�The relation is significant at the 0.05 level. 

This table shows OM, clay and PWP has higher correlations with CEC (L=95%) among the 

measured properties. As expected, the correlations between the CEC and sand content were negative. 

Positive correlation between CEC, soil OM and clay content is related to existence of negative charges 

on these properties (Manrique et al., 1991; Bell and Keulen., 1995 and Noorbakhsh et al., 2005). 

Positive significant correlation between CEC and PWP may be explained by the same influence of 

OM and clay on them. Najafi (2005) also observed high correlation coefficient between CEC and 

PWP (r=0.90) in his results.  

The correlation coefficient between CEC and OM in each family decreased from surface layer 

to depth layer, whereas the correlation coefficient between CEC and clay in each family increased 

from surface to depth layer (Table 3). It seems that existence of more OM in surface layer and more 

clay in depth layer is the main reason for significant correlation coefficients in this layer. These results 

are similar to the results of several researchers (Wilding and Rutledge, 1966; Noorbakhsh et al., 2005). 

In general, partitioning each family in to layers caused to increasing significant correlation coefficients 

for CEC, clay and OM. The partitioning of soils in to family and layer could not effect on correlation 

coefficient between CEC and PWP (Table 3). 

Developing Soil CEC PTFs using Regression   

The following models suggested by researchers in literature review were used for calibration 

of the soils in our study area: 

Model 1: CEC=Bo+B1 %OM�(Bell and Keulen, 1995; Noorbakhsh et al., 2005� 

Model 2: CEC=Bo+B1 %Clay (Bell and Keulen, 1995) 



 

 351

Model 3: CEC=Bo+B1 %Clay + B2% OM�(Martel et al., 1977; Bell and Keulen, 1995; Noorbakhsh et 

al., 2005)                           

Model 4: CEC=Bo+B1 %OM+B2%PWP (Seybold et al., 2005)                              

The results of calibration and its accuracy are given in Tables 4 to 7.  

Table 4. Test results of the regression for model 1. 

Calibration coefficients 

 
RMSE R2 

B1 Bo 

Partitioning Level Number 

14.0 0.28 18.5 8.7 No Partitioning 1 

8.8 0.75 36.4 -28  Surface layers of two 

families 
2 

11.8 
0.52 

-16.2 49.7 
Depth layers of two 

families 
3 

12.3 0.31 15.75 14.1 Family one 4 

7.4 0.79 31/6 -20 Surface layer of family one 5 

10.1 0.47 34.12 0.32a Depth layer of family one 6 

15.9 0.25 21.5 3.6 a Family two 7 

9.0 0.73 49.8 -48.4  Surface layer of family 

two 
8 

11.3 0.67 80.86 -45 Depth layer of family two 9 

a The coefficients are not significant at the 0.05 level 

Without partitioning, models (1) and (2) predicted CEC weakly. Results showed that although 

soil partitioning in to families didn’t improve accuracy of models (1) and (2), partitioning each 

families in to layers caused to increase R2 and decrease the RMSE. However, model (1) for upper layer 

and model (2) for depth layer were more suitable. These results accord well with correlation of CEC 

with OM and clay in Table 3. It seems that using simultaneous variables of OM and clay percentage 

caused to make better estimation for CEC (Model 3, Table 6). Accuracy of model 3 without 

partitioning is also higher than models 1 and 2. Comparison the R2 and RMSE of model 3 with models 

1 and 2 showed an increase of R2 from 0.28 to 0.67 and a decrease of RMSE from 14 to 9.5. 
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Table 5. Test results of the regression for model 2.  

Calibration coefficients    

 
RMSE R2 

B1 Bo 

Partitioning Level Number 

14.3 0.28 1.17 -10.8 a  No Partitioning 10 

13.0 0.38 2.2 -46 
Surface layers of two 

families 
11 

11.5 0.54 1.85 -46 
Depth layers of two 

families 
12 

12.7 0.26 0.87 2.3a Family one 13 

12.2 0.43 2 -29.4 a Surface layer of family one 14 

9.4 0.54 1.37 -25.4 Depth layer of family one 15 

15.5 0.28 1.6 -28 Family two 16 

14.1 0.34 2.7 -56.6 Surface layer of family 

two 
17 

11.6 0.65 3 -91.25 Depth layer of family two 18 

a The coefficients are not significant at the 0.05 level 

 

Table 6. Test results of the regression for model 3.  

Calibration coefficients    

 
RMSE R2 

B2 B1 Bo 

Partitioning Level Number 

9/5 0/67 1.4 22/8 -51.2 No Partitioning 19 

8/4 0/75 0.68 31�7 -43 
Surface layers of two 

families 
20 

10/0 0/65 1.17 29/6 -46.5 Depth layers of two 

families 
21 

7.9 0.72 1.11 19/5 -35.1 Family one 22 

7.2 0.81 0.51a 27�8 -30.97 Surface layer of family 

one 
23 

8.3 0.66 0.97 2�/4 -30 Depth layer of family one 24 

9.4 0.74 2.24 30.65 -90 Family two 25 

8.3 0.78 1/1 43.5 -74.9 Surface layer of family 

two 
26 

9.3 0.78 1.7 49 -85.2 Depth layer of family two 27 

a The coefficients are not significant at the 0.05 level 
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Soil partitioning in to family and family in to surface and subsurface layers could improve the 

quality of model (3) especially in surface layers (Functions no. 23 and 26). An unexpected value for 

function no. 24 is probably related to existence of different clay minerals. As texture and organic 

material data are more available and their measurement is more convenient than CEC, the use of the 

model (3) seems more practical and useful. 

When the PWP measurement is possible or the data related to the PWP and the percentage of 

the OM is accessible, the model (4) may be used (Table 7). The RMSE values in our research are in 

agreement with Noorbakhsh et al. (2005). Bell and Keulen (1995) reported less RMSE (1.5) and more 

R2 (0.85) rather than the results of the present research. Seybold et al. (2005) found the RMSE average 

of 0.3 and the average of 0.7 for R2 using two attributes of O.M and clay and exponential models. 

       Table 7. Test results of the regression for model 4.  

Calibration coefficients   
RMSE R2 

B2 B1 Bo 
Partitioning Level Number 

10.8 0.58 3.3 15.4 -42.4 No Partitioning 28 

8.0 0.77 1.6 49 -42.6 Surface layers of two families 29 

10.0 0.66 2.4 29.14 -42.2 Depth layers of two families 30 

8.8 0.65 3 2.3 -31.5 Family one 31 

7.0 0.81 1.28 43  -33.5 Surface layer of family one 32 

7.8 0.70 2.5 2 -26 Depth layer of family one 33 

11.8 0.60 4 13.2 -57.7 Family two 34 

8.3 0.78 1.88 64.5 -66.5 Surface layer of family two 35 

10.4 

 
0.73 2 97 -61.4 Depth layer of family two 36 

 

 Developing Soil CEC PTFs with Neural network  

We used same independent variables discussed in regression models as input data and CEC 

was supposed as only output variable for developing neural networks models. So, the models 1 to 4 

were also used for neural network.  

Table 8 indicates that the model 3 usually is the best for estimation of CEC in comparison 

with models 1 or 2 (data not shown). Therefore, O.M and clay contents were suitable inputs for 

developing soil CEC pedotransfer functions in both neural network and regression methods, Manrique 

et al. (1991) also concluded that contributions of clay and OM to the prediction of CEC increased 

significantly when soils were grouped by order. Partitioning soils in to layers especially in each family 

caused to improve quality of model 4 like regression method (Table 9).  
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 Table 8. Test results of the neural network for model 3. 

RMSE R2 Partitioning Level Number 

0.38 0.73 No Partitioning 55 

0.38 0.85 Surface layers of two families 56 

0.50 0.75 Depth layers of two families 57 

0.51 0.74 Family one 58 

0.31 0.90 Surface layer of family one 59 

0.58 0.67 Depth layer of family one 60 

0.46 0.77 Family two 61 

0.41 0.83 Surface layer of family two 62 

0.34 0.88 Depth layer of family two 63 

� 

 

           Table 9. Test results of the neural network for model 4. 

RMSE R2 Partitioning Level Number 

0.60 0.63 No Partitioning 64 

0.38 0.85 Surface layers of two families 65 

0.53 0.72 Depth layers of two families 66 

0.56 0.68 Family one 67 

0.30 0.90 Surface layer of family one 68 

0.52 0.73 Depth layer of family one 69 

0.57 0.65 Family two 70 

0.42 0.82 Surface layer of family two 71 

0.41 0.83 Depth layer of family two 72 

 

Comparison of regression PTFs with neural networks 

Relative Improvement shows R2 and RMSE values of the models in all levels of separation 

heavily decrease. This means that the neural network for CEC estimates has more accuracy. 

Amini et al. (2005) also indicate that using the neural network model with FFBP algorithm toward 

regression method estimates CEC with high accuracy. Our results with one node showed greater R2 

and less RMSE in comparison with their results. It seems that the main reason for higher accuracy is 

soil partitioning and more homogeneity of soils.  

CONCLUSION 

Soil partitioning increased the accuracy and precision of functions. The main reason for 

increasing the accuracy of models is increasing the homogeneity and uniformity of soil properties. 
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In both regression and neural network methods, concurrent input of clay and OM caused higher 

accuracy for estimation of CEC. Compared to regression, neural network technique resulted in 

pedotransfer functions with higher R2 and lower RMSE. Upgrading soil maps may be done by 

developing models of estimation for time consuming and costly variables.  
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