Please use this identifier to cite or link to this item: http://hdl.handle.net/11607/3702
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBöğrekçi, İsmail-
dc.contributor.authorYavuz, Zafer-
dc.date.accessioned2020-03-17T08:00:58Z-
dc.date.available2020-03-17T08:00:58Z-
dc.date.issued2019-
dc.date.submitted2019-06-11-
dc.identifier.urihttp://hdl.handle.net/11607/3702-
dc.description.abstractÖZET Nanoakışkanlı Düzlemsel Güneş Kollektörünün Isıl Performans Analizi Zafer Yavuz AKSÖZ Yüksek Lisans Tezi, Makine Mühendisliği ABD Tez Danışmanı: Prof.Dr. İsmail BÖĞREKÇİ 2019, 99 sayfa Son yıllarda yenilenebilir enerji kaynaklarına ilgi giderek artmaktadır. Güneş enerjisi bu kaynaklar arasında dünya üzerinde hemen hemen her yerde mevcut olan tek enerji kaynağı ve sınırsız olduğundann değerlendirmesi gerekmektedir. Bu çalışmada literatürderki termal güneş enerji sistemleri ve nanoakışkanların hazırlanışı, ısı transferi, akış teorileri ve sonuçları incelenmiştir. Test simulasyonu için düzlemsel güneş kollektörleri matematiksel olarak modellenip programı yazılmıştır. Tasarlanan bu kollektörün performansı %1 ve %5 lik karıştırma oranları ile hazırlanmış Al2O3 ve Cu nanoakışkanları kullanılarak simulasyon programında test edilmiştir. Test sonuçlarına göre Cu başta olmak üzere kullanılan nanoakışkanlar kollektör verimini artırmıştır. Böylece sıvıyı ısıtmak için gerekli kollektörün masrafı azaltılmıştır.tr_TR
dc.description.tableofcontentsTABLE OF CONTENTS ÖZET..................................................................................................................... vii ABSTRACT............................................................................................................ix ACKNOWLEDGEMENTS ....................................................................................xi 1.INTRODUCTION.................................................................................................1 1.1.Flat-Plate Solar Collectors in History ............................................................5 1.2.Solar Energy Use in History...........................................................................6 1.3.Solar Thermal Systems...................................................................................8 1.3.1.Flat-Plate Solar Collector........................................................................9 1.3.2.Evacuated Tube Solar Collectors..........................................................12 1.3.2.1.Heat Pipe Evacuated Tube Solar Collector....................................12 1.3.2.2.Direct Flow ETC............................................................................13 1.3.2.3.Thermal Tube Collector (TTC)......................................................13 1.3.3.Solar Air Collectors...............................................................................14 1.3.4.Concentration Solar Collectors .............................................................15 1.3.4.1.Parabolic Trough CSC ...................................................................15 1.4.Solar Energy.................................................................................................16 1.4.1.Solar Radiation......................................................................................16 1.4.2.The Source of Solar Energy ..................................................................16 1.4.2.1.The Solar Constant.........................................................................19 1.4.2.2.Fluctuation of Extra-Terrestrial Radiation .....................................21 1.4.2.3.Types of Solar radiation ................................................................ 22 1.4.2.4.Angles and Directions of Solar Radiation ..................................... 23 1.4.2.5.Solar Time ..................................................................................... 24 2.LITERATURE REVIEW................................................................................... 26 2.1.Review of Nanofluid ................................................................................... 26 2.1.1.Synthesis of Nanofluids........................................................................ 27 2.1.1.1.Two Steps Method......................................................................... 27 2.1.1.2.One Step Method........................................................................... 29 2.1.2.Types of Nanofluids............................................................................. 29 2.1.3.Thermal Conductivity Measurement Methods..................................... 30 2.1.3.1.Transient hot wire method............................................................. 30 2.1.3.2.Thermal constants analyser methods............................................. 31 2.1.3.3.Steady-State Parallel Plate Technique........................................... 32 2.1.4.The Effects on the thermal conductivity change of nanofluid.............. 33 2.1.4.1.Particle Size................................................................................... 33 2.1.4.2.Particle Shape ................................................................................ 34 2.1.4.3.Particle Material ............................................................................ 35 2.1.4.4.Volume Concentration................................................................... 35 2.1.4.5.Temperature................................................................................... 36 3.MATERIALS AND METHODS ....................................................................... 36 3.1.Heat Transfer Theory .................................................................................. 36 xv 3.1.1.Heat Transfer by Conduction ................................................................38 3.1.1.1.Thermal Conductivity ....................................................................39 3.1.2.Heat Transfer by Convention ................................................................40 3.1.3.Heat Transfer by Radiation ...................................................................40 3.1.4.Thermophysical Features of Nanofluids ...............................................41 3.2.Mathematical Model ....................................................................................44 3.3.Heat Losses ..................................................................................................46 3.3.1.Overall Heat Loss Coefficient...............................................................46 3.3.2.Top Heat Loss Coefficient ....................................................................48 3.4.Heat transfer Coefficient of the Working Fluid ...........................................53 3.5.Useful Heat Gain and Thermal Efficiency...................................................59 3.6.Modelling Simulation...................................................................................61 3.6.1.Model of the Top Heat Loss Coefficient...............................................63 3.6.2.Convection Heat Transfer of the fluid...................................................65 3.6.3.Efficiency Modelling.............................................................................65 3.7.Experiment Materials...................................................................................66 4.RESULTS AND DISCUSSION .........................................................................68 4.1.Top heat losses.............................................................................................68 4.2.Fluid Inlet and Outlet Temperatures ............................................................69 4.3.Useful Heat Gain..........................................................................................72 4.4.Efficiency .....................................................................................................74 5.CONCLUSIONS................................................................................................ 78 REFERENCES...................................................................................................... 80 APPENDIXES....................................................................................................... 84 Appendix 1. Function Library for Top Heat Loss Coefficient Calculation....... 84 Appendix 2. Collector Top Heat Loss Coefficient............................................ 86 Appendix 3. Function Library for Convection heat transfer Coefficient .......... 90 Appendix 4. Heat Transfer Coefficient of the 1% Al2O3 Nanofluid ................. 91 Appendix 5. Function Library for Collector Efficiency Calculation................. 93 Appendix 6. Flat-plate Solar Collector Efficiency Calculation......................... 95 Personel Information ............................................................................................. 99tr_TR
dc.language.isoturtr_TR
dc.publisherAydın Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalıtr_TR
dc.rightsinfo:eu-repo/semantics/openAccesstr_TR
dc.subjectAl2O3 , Cu, düzlemsel, güneş kollektörü, ısıl verim, nano akışkantr_TR
dc.titleThermal performance analysis of flat-plate solar collector using nanofluidtr_TR
dc.typemasterThesistr_TR
dc.contributor.departmentAydın Adnan Menderes Üniversitesi Fen Bilimleri Enstitüsü Makine Mühendisliği Anabilim Dalıtr_TR
Appears in Collections:Yüksek Lisans

Files in This Item:
File Description SizeFormat 
572748.pdf2.88 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.