
International Meeting on Soil Fertility Land Management and Agroclimatology. Turkey, 2008. p: 1033-1046 
 

 1033 

Geostatistical Analysis of a Water Well Field for Determination of Land Management Constraints 

Ali Volkan Bilgili1, Rifat Akis2, Salih Aydemir1 

1 Soil Science, College of Agriculture, Harran University, Sanliurfa, Turkey. 
2 Crop and Soil Science, College of Agriculture, Mustafa Kemal University, Hatay, Turkey. 

* Corresponding Author:  Ali Volkan Bilgili, email: alivolkan52@yahoo.com. Phone: +1 (607) 255 -1706 

Fax: +1 (607) 255-2644 

    

      ABSTRACT 

Soil spatial variability and heterogeneity is a tough but very important matter in the field-scale description of soil 

properties, such as soil electrical conductivity, soil saturated hydraulic conductivity, and soil salinity. Geostatistics is 

a useful tool to study spatial distribution of soil properties and optimum sampling strategies in field. Estimating soil 

salinity, EC and Ks is a vital issue in soil fertility and management. Geostatistical methods, kriging and cokriging, 

were applied  to estimate spatial distributions of the variables that were collected from a large size water well field 

for the surface soil, rather than entire bore-hole profile of the soil. The results suggested that estimation can be 

improved using cokriging , rather than kriging.  Comparing to kriging results, cokriging reduced the mean squared 

error and improved the estimation of EC by 2-100% depending on cross-correlated variables. Using the cokriging 

prediction maps of the soil properties, the soil can be managed cell by cell with prescribed appropriate management 

strategies such as irrigation and manure application to mitigate soil salinity in the region. 
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INTRODUCTION 

Soil salinity, soil electrical conductivity and other soil fertility parameters are on a regular timely 

basis determined in field and laboratories for arid and semi arid areas in southern Turkey. Excessive soil 

salinity may result in a large amount of crop loss and eventually land degradation (Lesch et al., 1992). 

Inappropriate management of low saline and high saline areas due to their non-homogeneous distribution 

on the landscape is known as the same input of tillage, irrigation water, fertilizer and pesticide application, 

seed spreading on indiscriminately selected agricultural lands although no economic yield return is very 

well known in these areas (Halvorson and Rohades, 1976). From the same study, the salinity problem is 

observed to influence the soil in two principle ways. Soluble salts bring about a high ESP (content of 

exchangeable sodium) and high osmotic potential, which are collectively unfavorable physical conditions 

for a soil to be fertile for a plant species. The attempts were made to remediate high saline areas by 

biological methods and by pinpoint site specific irrigation of good quality of water, gypsum addition, and 

leaching (Szabolcs, 1989; Mankin et al., 1997). Maintaining upgrade data of soil salinity requires high
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cost of densely sampling of a soil. This adds to saline soil irrigation or reclamation costs to be more 

expensive. Therefore, geostatistics provides appropriate tools to reduce the cost of soil sampling and 

maintenance of management practices, such as irrigation system in a field.  As a result, soils are mapped 

in terms of soil properties using some estimation techniques such as kriging and cokriging, numerical 

methods, and fuzzy set analyses. In this study, kriging and cokriging are used to map the pattern of the 

spatial distribution of a large water-well area growing cash crops of every kind, except citrus fruits. 

Kriging is used by Tabor et al. (1984, 1985) to determine spatial variability of nitrate in cotton plants and 

soil nitrate was correlated with nitrate content of cotton seedlings. Similarly, Yates et al. (1993) used 

kriging and cokriging in determination of salt affected soils, while Istok and Cooper (1988) applied 

kriging to study groundwater contamination. Zhang et al. (1995) applied kriging and cokriging to estimate 

trace elements of soils and plants and Yates and Warrick (1987) utilized cokriging to estimate soil water 

content with standby data of bare soil surface temperature and sand content. In this study, kriging and 

cokriging were applied to predict spatial variability of soil electrical conductivity (EC), hydraulic 

conductivity (Ks), Total Dissolved Solids (TDS), pH, and elevation and cokriging was compared to 

kriging in improvement of the estimation accuracy. The main goal is to determine soil constraints to 

agriculture in the studied basin. 

MATERIALS and METHODS 

Sampling and Analysis 

A total of 49 water wells and soil profiles at the same location in the Harran Plain, Turkey, have 

been sampled for the purpose of monitoring salinity. Sampling scheme and locations are given in Figure 1. 

Soil  pH, electrical conductivity (EC: µmhos/cm) and Total Dissolved Solids (TDS: mg/l) of water wells 

have been determined according to Richards (1954). Soil saturated hydraulic conductivity (Ks: cm/day) 

has been measured according to constant head method (Klute and Dirksen, 1986). Elevation at each 

location in the study area has been recorded using a GPS instrument.  
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            Figure 1. Study area and sampling locations.  

 

Geostatistical Modeling 

Kriging, as a linear spatial interpolation method, estimates the quantities of soil properties at 

unsampled locations by assigning weights to each neighbor location based on their distance from the 

location being estimated. Weights sum up to one. Kriging can be formulized as: 
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oxZ is the kriging estimation at an unsampled location (xo), n is the number of samples in a 

search neighborhood, wi are the weights assigned to the ith observation Z(xi). Weights are determined 

using a semivariogram that measures spatial correlation and covariance structure between data points for 

each variable. It is computed using following equation (Journel & Huijbregts,1981):  
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γ is the semivariance between two observation points, Z(xi) and Z(xi+h),  separated by a 

distance h, and n is number of pairs at the distance h.  

Cokriging (COK) uses a secondary variable, (Z2), which is spatially cross correlated with the primary 

variable (Z1). It is formulated as: 
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where Z*COK(xo) is the cokriging estimate at an unsampled location (xo), wi and wj are cokriging weights 

associated with the primary variable Z1(xi) and the secondary variable Z2(xj) at ith and jth locations, 

respectively, which are obtained based on the cross-semi variogram: 
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RESULTS and DISCUSSION 

Table 1. Descriptive statistics of the random variables. 

Variable Count Max. Min. Mean Stdev Skewness Kurtosis 
 1st 
Quart. Median 

  3rd 
Quart. 

EC (µmhos/cm) 49 3450 412 1071 654 1.92 6.48 693.8 885 1150 
pH 49 8.85 7.95 8.3 0.47 0.74 1.55 8 8.38 8.85 
Ks (cm/day) 49 6.63 0.39 1.571 1.4 1.58 6.136 1 4.03 2 
Elevation 49 399 368 379.3 6.7 0.77 3.39 374.7 378 382.3 
TDS (mg/l) 49 27.5 3.7 11.8 5.6 0.9 3.16 7.75 10 15 

 

Table 1 shows descriptive statistics of the data set used in spatial analysis. It is clear that the soil 

EC has the highest variability than the rest of the variables. The soil EC proves the highest asymmetrical 

distribution with the highest skewness on comparison to the other variables.  Similarly, the second highest 

skewed variable is Ks. All the variables are positively skewed. This pattern is the same for standard 

deviation which is the highest for EC and the lowest for soil pH. This statistics is strongly influenced by 

outliers in the data set. Since the data showed positive skewness, all mean values are greater than median 

values of the data. This positive skewnes and larger standard deviations may be due to a limited number 

of the data points in the sampling field. The greater number of samples is likely to result in the lower 

variance and standard deviation in the data set and the distribution can be much like normal distribution. 

Table 2 shows the correlation coefficients and p-values in parentheses for the intervariables. 

Elevation is always negatively correlated with the variables in the study. This may mean increases in 

elevation points in the water-well field always result in decreases in the values of random variables. In 

other words, the highest values of the EC, TDS, pH, and Ks are likely to be found on the foothills and 

valley bottoms. The elevation and soil EC correlation is significant and may be an indicative of high 

amount of leaching of soil salts from high elevations to low elevation points by the seasonal precipitation 

events that may cause accumulation of salts in the foothill slopes of the landscape. Ks negatively 

correlated with pH and TDS, while soil EC holds a positive correlation with Ks. 
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Table 2. Correlation matrices of variables (p values in parenthesis). 

Variables TDS pH Ks Elevation 

EC 0.471 

(0.001) 

-0.254 

(0.078) 

0.133 

(0.362) 

-0.288 

(0.045) 

TDS  -0.537 

(0.000) 

-0.024 

(0.872) 

-0.145 

(0.319) 

pH   -0.052 

(0.722) 

-0.064 

(0.661) 

Ks    -0.006 

(0.969) 

 

Another negative significant relationship exists between pH and soil EC at 10% significance level, 

whereas TDS and pH are negatively correlated and the relationship is significant at any p-value. The 

negative pH-EC correlation may be attributed to salt hydrolysis in the soil, result of which doesn’t always 

cause incremental pH in soil. On the other hand, the more salinity doesn’t mean the higher pH in soil. 

Similarly, pH and TDS don’t increase and lower as conjugates. The other significant relation occurs 

between soil EC and TDS (p <0.05) and this relationship is positive. This may be due to the fact that 

totals dissolved solids contribute in larger part to the soil EC and therefore, very commonly in the 

soilscape, EC-TDS combination for positive correlation remains valid. 

 

Spatial variability 

All the variables were analyzed spatially with kriging, whereas only strongly correlated 

parameters were analyzed by cokriging on the data set. Generally speaking, all the variables used in 

kriging tended to be more easily predictable than in cokriging. Cokriging not only calculates the semi-

variance of each variable, but also calculates cross-variogram for two or more variables in the cross-

autocorrelation process. Cross-variogram model parameters mostly came out of anisotropic spatial 

distributions. There may be multiple reasons for this. First of all, sampling techniques and sampling times 

are not known whether to be consistent and locations of the samples are assumed to be the same. 

Secondly, the variables are not correlated very well with one another and correlation coefficients are 

generally very low and generally negative. The correlation matrices of the data showed that 2 out of 10 

correlations were positive and lower than 50%.  

 If two random variables are negatively correlated, the rate of increase in cross-variogram is expected to 

decrease in distance. On the other hand, if cross-vaiogram of two or more variables increases, the random 

variables are said to be positively correlated. In this data set, anisotropy and trend for all variables prevail. 

Fortunately, ArcGIS eliminates the trends and computes the spatial semivariance model first. At the end 
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Kriging Variogram Model for Field Ec
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of the model computation, the eliminated trend is added back to the data. This process adds more 

reliability to ArcGIS geostatistical analyses because in the semivariance model computation process the 

trend is not involved and model is computed safely. 

 

Kriging models  

Figure 2 illustrates spatial distribution of TDS in the study area Total dissolved solids in the water 

well field are described spacially according to the spherical variogram model. The TDS concentrations 

reach at the sill value 30 in 1835 m range. 

 

 

 

 

 

 

 

 

 

   Figure 2. TDS variogram model (�(h) = 30.3(1.5(h/1835)-0.5(h/1835)3). 

 

Figure 3 illustrates spatial distribution of soil EC in the study area. The soil EC distributes according to 

spherical variogram model as was the TDS. The range and sill values for the soil EC are 10070 m and 

70093 x 10-5. The variability of the soil EC is the highest among the other variables analyzed. The 

variation coefficient is greater than 40% for soil EC, while this was lower for the soil TDS (not given). 

 

 

 

 

 

 

 

 

 

              Figure 3. Field variogram model for EC  

              (�(h) = 70093 x 10-5(1.5(h/10458)-0.5(h/10458)3). 
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Kriging Variogram Model for field Ks
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   Like the other variables of the soil, saturated hydraulic conductivity has also distributed according to   

spherical model with a sill and range value, 0.392 and 10458 m, respectively (Figure 4). 

 

 

 

      

 

 

 

 

 Figure 4. Variogram model for the field saturated hydraulic conductivity  

  (�(h) = 0.023+0.392(1.5(h/10458)-0.5(h/10458)3). 

 

Comparisons of Kriging Predictions with Cokriging Estimations 

The comparisons of cokriging to kriging for some of the significantly correlated parameters of the 

data set were made. The following method was used to compare results estimated by kriging and 

cokriging. Relative improvement, or relative reduction of estimation accuracy, is defined by: 

 

 RE = 100%(�MESR�)- (�MSEE�)/(� MSE�)          (Pozdnyakova and Zhang, 1999) 

 

where RE is percentage of improvement or reduction, (positive RE improvement, negative RE reduction), 

MSER kriging mean squared error, and MSEE is cokriging mean squared error. If the RE is positive, the 

evaluated method (cokriging) is better than reference method (kriging). On the other hand, negative RE 

corresponds to evaluated method that is worse than reference method. The results are given in table 3. 

 

Table 3. Comparison of kriging to cokriging by RE factor. 

Kriging variables MSEkrig MSEcokrig RE % Cokriging variable 
Ks 22.01 19.6 11.04 Ks-Elevation 
EC 448505.3 441266 0.02 EC-Elevation 
EC 448505.3 38.45 100 EC-TDS 
TDS 41.2 38.45 0.067 EC-TDS 

 

Table 3 shows that mean squared errors for the random variables are generally greater for kriging 

than the ones for cokriging. Depending on the cross-variogram model, the accuracy and improvement of 

the prediction maps developed in a large range.  The improvement of the predictions ranged between 2 

and 100 % for the variables that were used in cokriging. For example, if the field EC was predicted by 
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EC-Elevation cokriging model, the improvement was 2%, while EC –TDS cross-variogram improved 

field EC prediction as 100%.  This shows that cokriging is better to estimate unknown sample locations of 

EC in the field, rather than kriging. 

The cross-variogram is computed as the following; 

�12 = 0.5*(�+
12 - �11 – �22)   (Zhang et al., 1995) 

where, �12 is cross-variogram of Ks and elevation; �11 is variogram of Ks; �22 is variogram of elevation; 

�+
12 is the variogram of Ks + elevation. 
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Figure 5. Cross-variogram of elevation and saturated hydrauclic conductivity of the soil (�12(h) =-7.25 -0.26 (1-exp(-

h/10458)). 

 

Figure 5 shows that cross-variogram decreases with distance for the elevation and Ks variables. 

The reason for this is because of the fact that both of the variables are negatively correlated (Table 2). 

Therefore, cross-variogram is not expected to increase. The cross-variograms for the rest of the 

combination of the variables were not developed for testing the hypothesis that cross-variogram always an 

increasing function if the random variables are positively correlated. Among the cross-variogram of the  

variables, the cross-variogram of elevation-Ks was unique to develop because of the fact that Ks and 

elevation was negatively correlated with the lowest correlation coefficient.  Elevation and Ks predict each 

other via this model given above. 
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Kriging prediction maps for the variables 

 

 
Figure 6. Kriging prediction map of soil EC. 

 

Figure 6 illustrates the kriging distribution of field EC. The EC distribution is very much like 

homogeneous in the field. The contour lines of EC do not change in their slopes and contour intervals are 

quite similar with each other. However, level of EC varies for each contour line in the field.  According to 

the contour labels, in the north-east direction, the highest EC values are encountered in the center of the 

field. This high level of EC decreases when the contour lines come closer on the boundaries of the water 

well field. This may mean that the factors that influence field EC are spatially different in the areas of 

center of the field and edges of the field. Therefore, the adverse effects of soil EC can be improved in the 

center line of the field. Kriging method weighted higher for the pairs of points in the center of the field 

than the points of samples on the edge of the field. Beside, the north-east border of the central field wasn’t 

given enough weight so that the prediction would be more consistent for allover the field. The lower 

weighted north-east corner of the field reveals more variability to the kriging method. The reasons for the 

variability may be various such that the data had a mathematically defined trend and anisotropy was not 

completely eliminated. In fact, the EC distribution of the field corresponds very well to the field elevation 

kriging map. Where elevation increases are the places where the soil EC decreases. In the end, it is likely 

to impact water quality of the well field. For example, withdrawal of water from the basin-fill aquifers via 

water wells could cause changes in vertical head gradient and that may increase the potential for water 

quality degradation. Also, the wells themselves, if not properly constructed, could provide pathways for 

salts, pesticides, and fertilizers to reach the basin-fill aquifer. 
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           Figure 7. Kriging prediction contour map of sampling point elevations in the field. 

 

Figure 7 shows the elevational changes over the water-well field. In northward increases 

elevation steadily and a small alluvial channel or valley rift exists on the east direction, while south and 

southeast corner is gentle slopping. This spatial pattern of the field influences the distribution of the soil 

and water-well properties. Accordingly, field management options must take the surface topography into 

consideration for the particular soil unit in the studied area. As a result, any yearly precipitation is highly 

likely to end up with the accumulation in the lower elevation of the field, which is responsible of the salt 

content levels of the water-well field. Kriging method predicted anisotropic elevation field. The 

variogram was not omnidirectional, but changing.  
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                                                      Figure 8. Kriging prediction map of TDS. 

 

Figure 8 depicts TDS distribution contours by kriging method. Although TDS and EC 

significantly correlate with each other, their distributions prove completely different in the space. The 

TDS of the well field is not homogeneous as was the case with the field EC. The highest TDS 

concentrations occur in the center of the field as did field EC, while the TDS concentrations decreases 

outward of the central field. Similarly, Figure 8 proves that high elevations correspond to low TDS values 

and low elevations have the highest TDS values, a similar spatial pattern to the field EC. In contrast to 

soil EC, TDS values did not show strong anisotropy. The search direction had 2.7 degree of tolerance, 

whereas EC had more than 290 degree of search direction. If the field is a recharge area, return irrigation 

water may increase TDS in the shallow unconfined aquifers of the basin. High TDS values generally 

correspond very well with the high soil EC and SAR due to excessive clay dispersion and freed Na+. 

Therefore, chemical amendment that includes Ca and Mg is always among the reclamation options. 

Further, they increase aggregation and soil drainage which eventually contributes to favorable crop 

growth conditions in soil. Various crops can improve soil permeability by removing more Na+ from soil 

that would increase aggregate stability and drainage in the soil. According to the data set analyzed, soil 

pH is fairly high and Na+ may be problematic issue in the soil. Kriging prediction map of TDS shows that 

the basin can be improved for TDS and drainage if the hydrologic settings provide excess high quality 

water that can remove Na+ and penetrate the soil downward. Furthermore, if Na+ is replaced with Ca and 

Mg, the leaching will be facilitated to remove excess Na+ from the soil. As a result, pH will decline to a 
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favorable condition for plant growth and TDS will be lowered. The kriging map provides another option 

to improve soil management. If the preceding reclamation options do not provide mitigation of the 

problem, deep tillage may apply to the well field to decline salinity impact to dilute soil salts. The kriging 

contours of TDS may be the tracking lines to apply point specific land management strategies. 

 

                               
        Figure 9. Cokriging prediction map of the EC and TDS. 

 

Figure 9 shows cokriging prediction map of soil EC and TDS. The TDS and EC have predicted 

each other according to the cross-variogram model that produced the TDS-EC contour map (figure 9). 

The only obstacles for agriculture are the areas of red contour lined parts, while the rest of the contour 

lines of concentrations don’t pose a stringent threat for the crop species in the basin. The reasons for 

better prediction of TDS and EC in the basin may be attributed to the closer groundwater to the soil 

surface, accumulation of the salts and total solids due to storm events and snow melts in the basin, high 

summer temperature and evaporation and transpiration. In addition, cokriging is an extended kriging that 

uses more than one variable to predict the other. From the agricultural standpoint, soil quality and land 

management may be the major goals in the basin. The cokriging map can be utilized to strategize how 

much and what kind of agrochemicals to be applied when-and- where in the soil. The cokriging map 

reveals that EC and TDS, collectively and homogeneously, distribute in the field. Therefore, soil may be 

managed for EC more efficiently if the drainage and irrigation practices suffice. 
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CONCLUSIONS 

The geospatial analyses of the salinity parameters (soil EC, pH, TDS and Ks) used in this study 

gave detailed prediction maps of the salinity parameters so that they could be used on purpose of land 

management practices in the study area. The data showed very large trend and anisotropy. However, 

ArcGIS removed the trend and predicted the maps of random variables by adding the trend to the 

predictions at the end. This yielded into a better spatial prediction of the variables in the soil.  Almost all 

the variables negatively correlated with each other, except field EC and TDS. The data for the all 

analyzed variables distributed spherically in the study area. All variables negatively correlated with field 

elevation. Spatial variability maps showed that the soil spatial variability of all the variables tested was 

the largest along the central line of the basin. Most of the agricultural constraints occurred in the central 

area of the basin, also. This was because the basin was an accumulation ditch for the any precipitation 

event year around and all transportable solids and chemicals accumulated in the basin. The soil EC was 

the biggest constraint to agriculture in the basin because of its high variability and relatedness to the field 

TDS. Some of the wells were dry in midsummer in the field. This showed that the basin water pumping 

rates and evaporation were very high and vertical gradient of the groundwater drops largely in summer. 

At some points water table was close to soil surface. This increased the vulnerability of the groundwater 

quality due to salt accumulation, which eventually turned to be a constraint in agricultural use. The results 

showed that the basin needed improved drainage and irrigation methods. Beyond these practices, 

chemical amendment of Ca and Mg was required to reduce the adverse effect of soil Na+ so that soil 

structural stability and drainage could improve better. For better management purposes, soil water quality 

and soil properties need dynamic modeling using stochastic approach. 
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