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ABSTRACT 

The Lysinibacillus group are motile Gram-positive bacilli, with oval or spherical spores, oxidase and catalase 

positive, not grouped in strict chains, with strictly oxidative metabolism and very similar to Bacillus sphericus 

group.  

Two indigenous isolates of Lysinibacillus fusiformis from oil-polluted soil near gas station and stabilized sludge 

from petrochemical plant in Serbia (FOV – HIP “Petrohemija”, Pancevo) were tested on IAR and HMT and 

showed high sensitivity to neomycin, cephalexin and bacitracin, and were resistant to trimethoprim. Both isolates 

were tolerant to 100µg/ml of Zn and Co, 10µg/ml of Mo, but they differed in tolerance to 20µg/ml of Cd and 

10µg/ml of Hg. The isolate from stabilized sludge showed moderate emulsification ability of xylol (E24 65.8) and 

mineral oil (E24 75.6). The isolate from oil-polluted soil showed very strong emulsification ability of xylol (E24 

87.2) and moderate of mineral oil (E24 72.7).  RAPD fingerprinting showed clear differences between the two 

Lysinibacillus fusiformis isolates.  

Keywords: Lysinibacillus fusiformis, polluted soil, sludge, heavy metals, emulsification ability, RAPD 

fingerprinting   

 

INTRODUCTION 

Mesophilic, strictly aerobic, spore-forming bacilli that are capable of producing spherical 

endospores have been designated Bacillus sphaericus. These bacteria metabolize a variety of organic 

and amino acids but cannot metabolize sugars, leading to negative results for many of the traditional 

phenotypic tests used in the classification of members of the genus Bacillus (Baumann et al., 1991). 

The diversity of these bacteria was demonstrated by Krych et al. (1980), who identified five distinct 

DNA homology groups among the 50 strains using DNA hybridization techniques. Strains belonging 

to DNA homology group IIA are of particular interest as pathogenic for the larvae of certain species of 

mosquitoes. The homology IIB group consists of nonpathogenic strains that exhibit 60 to 66% 

homology with the group IIA reference strain. In a study of 91 B. sphaericus strains in which 155 

phenotypic tests were used, strains belonging to homology group IIA clustered with strains belonging 

to homology group IIB at a Jaccard similarity level of 85.5%. In 1988, Priest et al. described species 

Bacillus fusiformis, which is homologue to IIB group according to Krych. Urea-hydrolysing capability
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of Bacillus fusiformis differentiated it from B. sphaericus. Later studies based on random amplified 

polymorphic DNA (RAPD) probing (Woodburn et al., 1995) and ribosomal gene restriction fragment 

length polymorphism (RFLP) analyses (Aquino de Muro et al., 1992) confirmed the separate 

groupings. Phylogenetic analysis based on 16S rDNA sequences from 58 B. sphaericus strains 

Nakamura (2000) was used to examine the genetic heterogeneity of the taxon. Data showed that B. 

sphaericus was genetically and phenotypically a highly heterogeneous taxon comprised of at least 

seven genetically distinct taxa, one of which encompassed B. sphaericus insect-pathogenic strains and 

another B. fusiformis. 

Lysinibacillus fusiformis is described by Ahmed et al. (2007) as spore-forming, Gram-positive, 

motile, rod-shaped and boron-tolerant (up to 150 mM boron) bacterium isolated from soil, which can 

tolerate 5 % (w/v) NaCl and has growth range 16–45 °C and pH range pH 5.5–9.5. In contrast to the 

type species of the genus Bacillus, Lysinibacillus fusiformis strains contain peptidoglycan with lysine, 

aspartic acid, alanine and glutamic acid. Comparative analysis of the 16S rRNA gene sequence 

demonstrated that isolated Lysinibacillus fusiformis strains were closely related to Bacillus fusiformis 

DSM 2898T (97.2 % similarity) and Bacillus sphaericus DSM 28T (96.9 %). DNA–DNA relatedness 

was greater than 97 % among three isolated strains and 61.1 % with B. fusiformis DSM 2898T and 43.2 

% with B. sphaericus IAM 13420T. Based on the distinctive peptidoglycan composition, phylogenetic 

analyses and physiology, the strains were assigned to a novel species within a new genus, for which 

the name Lysinibacillus boronitolerans gen. nov., sp. nov. was proposed. It was also proposed that 

Bacillus fusiformis and Bacillus sphaericus be transferred to this genus as Lysinibacillus fusiformis 

comb. nov. and Lysinibacillus sphaericus comb. nov., respectively (Ahmed et al., 2007).  

The aim of this study was to characterize and compare the two Lysinibacillus fusiformis  

strains indigenous to oil-polluted soil and  stabilized sludge from petrochemical plant in Serbia.  

 

METHODS 

Indigenous isolates of Lysinibacillus fusiformis from oil-polluted soil (marked BZi) near gas 

station (BZi4) and stabilized sludge (BMi) from petrochemical plant in Serbia (FOV – HIP 

“Petrohemija”, Pancevo) (BMi3) and Bacillus sp. isolates, BMi 9 and BMi12, were tested and 

compared to isolates BZi1 from oil-polluted soil near gas station, previously identified as Bacillus sp. 

The isolates were collected by the Institute of Soil Science, Belgrade, Serbia. Working stock cultures 

were incubated at 28 °C on nutrient agar amended with 5 mg MnSO4x 2H2O until sporulation occurred 

and then stored at 4 °C. Isolates were tested on nutrient agar (NA) supplemented with different 

antibiotics: novobiocin, neomycin, cephalexin, bacitracin, trimethoprim and clindamycin. Isolates 

were tested to 100 and 200µg/ml of Zn and Co, 10and 50µg/ml of Mo, 4,10 and 12 µg/ml of Hg and 

20µg/ml of Cd added to NA. Emulsification ability of xylole, toluene and mineral oil was assessed as 

described by Cooper and Paddock (1983). Substrate utilization was tested on BH medium with 1% of 

toluene and xylole and 0.5% mineral and crude oil (Toledo et al., 2006). RAPD analysis was 
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performed as recommended by Dooley et al. (1993). Similarity was estimated by means of the simple 

matching coefficient (SSM) and clustering was based on the unweighted pair group arithmetic 

average-linkage algorithm ( STATISTICA 7 software). 

 

RESULTS and DISCUSION 

  Two indigenous Lysinibacillus fusiformis isolates from stabilized sludge (BMi3) and oil 

polluted soil (BZi4) were assessed for antibiotic resistance and heavy metal tolerance and compared to 

Bacillus sp. (BMi9 and BMi12) from stabilized sludge and Bacillus thurangiensis (BZi1) from 

polluted soil. The results are summarized in Table 1. Isolate BMi3 was more sensitive to novobiocin 

and bacitracin than other isolates, except for BZi1 which was very sensitive to all investigated 

antibiotics. BMi3 isolate was tolerant to Cd (20 µg/ml), but showed low tolerance to Mo, Zn, Co and 

Hg. Isolates BZi4, BMi9 and BMi12 showed high tolerance to heavy metals, especially BMi12, which 

was tolerant to Hg 12 µg/ml.  

  

antibiotic (µg/ml) heavy metal (µg/ml) Isolate 

Nov 

5 

Clin 

2 

Neo 

120 

Bac 

40U 

Ceph 

30 

Tmp 

5 

Mo 

50 

Zn 

200 

Cd 

10 

Cd 

20 

Co 

200 

Hg 

2 

Hg 

10 

BMi3 S I S S S R - - + + - + -* 

BZi4 I S S I S R + + + - + + + 

BZi1 S S S S S I + + + - + + + 

BMi9 R S S I S R + + + - + + + 

BMi12 R S S I S R + + + - + + +** 

-* - isolate sensitive to 4 µg/ml Hg;  +**- isolate tolerant to  Hg 12 µg/ml  
R- resistant, S- sensitive, I- intermediate 

Table1. Antibiotic resistance and heavy metal tolerance of Lysinibacillus fusiformis and Bacillus sp. isolates  

 

substrate utilization emulsification activity Isolate 

toluene 

1% 

xylole  

1% 

mineral oil  

0,5% 

crude oil 

0,5% 

toluene xylole mineral 

oil 

BMi3 + + - - 75.64 65.79 75.61 

BZi4 + ± - ± 92.68 87.18 72.74 

BZi1 - + + + 74.42 62.50 78.25 

BMi9 ± ± ± + 95.45 99.72 78.40 

BMi12 + + + + 97.67 83.82 89.62 

Table2. Substrate utilization and emulsification activity of Lysinibacillus fusiformis and Bacillus sp. isolates 

 

Large number of Bacillus strains, including B. fusiformis, capable of degrading different 

hydrocarbons have been isolated from oil-contaminated soils (Bento et al., 2003). Our investigation 
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showed no growth of isolate BZi1 on toluene, but good growth on other substrates (Table 2). None of 

Lysinibacillus fusiformis isolates were able to grow on mineral oil as only source of carbon, while 

isolate BZi4 grew poorly on crude oil and xylole and well on toluene. Bacillus sp. isolate BMi9 grew 

poorly on all substrates except crude oil, while BMi12 showed ability to utilize all examined 

substrates. 

Microorganisms growing on hydrocarbons frequently produce biopolymers with emulsifying 

or surfactant activity (Ron and Rosenberg, 2002), that can facilitate the availability of hydrophobic 

substrates. Emulsifying biopolimers can stimulate growth of hydrocarbon degrading bacteria and 

improve their ability to utilize these compounds (Toledo et al., 2006). In this study, the capacity of 

isolates to produce extracellular biopolymers with bioemulsifier activities was assayed. Emulsification 

activity of Lysinibacillus fusiformis isolate BMi3 ranged from 65.79 (xylole) to 75.64 (toluene), and it 

was lower for BZi4 isolate (72.74 for mineral oil and 92.68 for toluene).  Isolate BZi1 from polluted 

soil was the least effective, while Bacillus sp. isolates BMi9 and BMi12 from activated sludge were 

highly effective in emulsification, especially BMi9 on xylole (99.72) and BMi12 on toluene (97.67). 

Previous reports on different microorganisms showed variable values of emulsification of hydrocarbon 

by cell-free broth after 24h: 10-70 Torulopsis petrophilum (Cooper and Paddock, 1983), 25-68 

Bacillus sp. IAF343 and 70 B.cereus on pH 2-7 (Cooper and Goldenberg, 1987). E24 value for 

Lysinibacillus fusiformis isolates from this work were similar to previously reported, except for BZi4 

isolate on toluole as investigated solvent that showed higher emulsification values. The two Bacillus 

sp. isolates from stabilized sludge investigated in this work also showed high emulsification activity, 

suggesting that they produced high amount of biopolymers that act as good emulsion stabilizers.  

The RAPD method is very useful in fingerprinting of bacteria because previous sequence 

information is not necessary (Williams et al., 1990). Woodburn et al. (1995) used the ability of RAPD 

fingerprinting data to indicate heterogeneity within the B. sphaericus isolates. RAPD analysis in this 

work was performed to confirm differences between two Lysinibacillus fusiformis isolates and to 

determine genetic distance of investigated isolates. Results of genotypic analysis (Figure 1) and 

similarity level are shown as dendrogram in Figure 2.  
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The results of RAPD fingerprinting support the results of phenotypic analysis that two L. 

fusiformis isolates are quite different. The similarity level between them obtained with SPH1 primer 

was only 30%. Bacillus sp. isolates formed a cluster with 78% of similarity. BZi4 isolate showed 

highest similarity level to Bacillus group, then to Lysinibacillus fusiformis BMi3. Anandkumar and 

Maruthamuthu (2008) who investigated manganese oxidizing strains from orthodontic wires by 16S 

rRNA sequencing, described two Lysinibacillus boronitolerans strains that were phylogenetically 

diverse from Lysinibacilus fusiformis strain. 

Genotypic and phenotypic analysis showed significant differences between two Lysinibacillus 

fusiformis isolates investigated in this study. Ability to tolerate heavy metals, to grow on toluene, and 

to produce a biopolymer with high emulsification activity gives the isolate BZi4 potential for use in 

bioremediation process. Bacillus isolates BMi9 and BMi12 could also potentially be used in 

bioremediation. 
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Figure 2. Dendrogram of RAPD generated by SPH1 primer on Lysinibacillus fusiformis and Bacillus sp. isolates  

 

 

 


