Nitrate Uptake and Assimilation Efficiency of Excised Leaves of Barely (C3) and Maize (C4) Plants. I) Effect of Temperature on Nitrate Uptake and Assimilation

M.O.El_Mohtasem

Prof. of plant nutrition & soil fertility Soil dept. Fuclty of agr. Cairo, Egypt

Osam1@yahoo.com

ABSTRACT

Nutrient assimilation by seedling is an early indicator of subsequent plant growth and development. This study was conducted to compare the effect of temperature on NO3 uptake and reduction by excised leaves of Barley (C3) and Maize (C4) plants with and without source of energy supply. The seedling Barley (Hordeum Vulgare L.CV UC 337) and Maize (Zea Mays L.CV pioneer 3162) were sown in vermiculate in pots kepts in growth chamber at 25°C. The tip 10 cm portion of leaves excised and placed in small glass vials containing 8 ml from, 3.0, 6.0 and 10 mM of KNO3 solution with and without sucrose. The temperature treatments were 15, 20, 25, 30 and 35°C. Net NO3 uptake were determined by following it's depletion from uptake solution that initially contained the same concentration of NO3 as the induction solution. NO3 uptake by both C4 and C3 leaves was increased as NO3 level and temperature increased. While C3 leaves(Barley) was more efficient than C4 leaves (Maize) in NO3 uptake at all NO3 concentration for NO3 reduction percent (assimilation), C4 (Maize) leaves were efficience than C3 (Barley) plants, and NO3 reduction percent increase with increasing the temperature until 25°C then decreased. The addition of sucrose by 1% to the medium as energy source increased the NO3 reduction percent in both C3 and C4 leaves.

INTRODUCTION

NO3 uptake & accumulation are influenced by many environmental factors as respiration (Willis & Yemm ,1955), and strongly affected by temperature (Ezeta & Jackson 1975).Nitrate accumulation in plant tissues is response to increasing ambient nitrate concentrations (Chamtarotwong et al ,1976). Nitrate uptake affected by low light (Cantliffe ,1972). Also NO3 uptake & reduction by plants differed from (C3) plants to (C4) plants, plants with C4 (Maize) photosynthesis produce more dry matter per mg nitrogen utilized than plants with C3 (Barley) metabolism (Brown, 1978).Oaks(1994) pointed out that uptake of nitrate as also it's accumulation was greater in Barley than in Maize. While conversion of of NO3 –N to protein –N was greater in Maize. Lawlor et al (1980) found that leaves grown at the lower temperature, especially with more nitrate , contained much more soluble protein, nitrate reductase & free amino acids per leaf unit area than plants grown in warmer conditions. High temperature affect photosynthesis by altering the excitalion energy distribution by chaning the structure of thylakoids (Berry & Bjorkman 1980), and by chaning the activity of the calvin cycle and other processes such as photorespiration and product synthesis.Also the changes in temperature induce

variations in the activity of enzymes & that because of their different Q10 values (Pollock & Rees,1975).

The aims of this work was to study the effects of ambient nitrate concentration, temperature & the addition of sucrose on the processes of nitrate uptake & reduction by Barley (C3) and Maize (C4) plants.

MATERIALS and METHODS

Barley (Hordeum Vulgare L.CV.337) and Maize (Zea maize L.CV. Pioneer 3162) seeds were sown in vermiculite as growth media in pots. The pots kept in growth chamber at 25°C in the darkness for 7 days & then in continous light (500 U.E m 25-1) for anther 3 days. During the light period, plants were irrigated with N-free, one fourth strength Hoaglan nutrients solution (Hoagland & Arnon ,1950). The seedlings were irrigated with 10 uM potassium nitrate ,24 h prior to the experiments. The tip 10.0cm portion of leaves were excised & placed in small glass vials containing 8.0ml of NO3 as K NO3 (without and with sucrose) ,kept in growth chamber in light and different temperature treatments 15,20,25,30 and 35°C. After 8.0 h uptake period, leaves were removed from the solution, rinsed in water & frozen until NO3 extracted. In vivo nitrate reduction was determined by subtracting the amount of nitrate present in the leaves from that disappeared from vial. Nitrate from excised leaves was extracted by grinding the tissues in mortar & pestle in liquid nitrogen, adding deionized water and centrifugation at 10.000 RPM for 10 minutes. The nitrate in solution was determined using HPLC. In vivo reduction was determined by subtracting the nitrate concentration of the tissue at time (t) from the initial nitrate concentration of the tissues at time (t0) plus the amount of nitrate taken up (Chantarotwong et al, 1976). PH did not change significantly during the experiments. Each treatment contained three replicates, and each experiment was replicated three times. The results of the three experiments were then combined for statistical analysis.

RESULTS

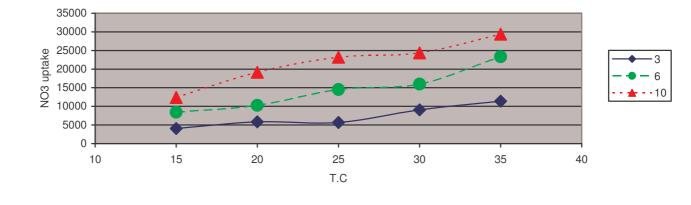
NO3 Uptake

Response curves of NO3 uptake , reduction & reduction percent to increasing concentrations of ambient nitrate constructed for seedling equilibrated in a solution of 0.1 mM for 24 hr. before uptake studies began [Table (1),Figure(1&2)]. Nitrate uptake was linear with increasing NO3 ambient concentration with all temperature treatments in both Barley & Maize plants . NO3 uptake was higher in Barley than Maize at all NO3 ambient concentration. (OAKS et al,1994) found that NO3 uptake was higher in Barley than Maize. For sucrose addition to the nutrient solution [Table (2), figure (3&4)], the data shows that this addition increased NO3

uptake only with high ambient concentration, especially in corn plants. [Table (1), figure (1&2)] show's that increasing the temperature increased the NO3 uptake in both plants. This relation is more clear in Barley than Maize but increasing the temperature over 30 C the NO3 uptake in Barley decreased. Since nitrate uptake are largely dependent upon respiration, their response to increasing temperature as expected.

NO3 Reduction

In Vivo, reduction was determined by subtracting the nitrate concentration of the tissues at time (t) from the initial nitrate concentration of tissues at time (t0) plus the amount of nitrate taken up(Chantarotwong et al, 1976). The data presented in [Table (1), figure (1&2)] shows that NO3 reduction increased with increasing ambient NO3 concentration. Also the values of NO3 reduction were higher in Maize than Barley leaves. For the effect of temperature, in Maize leaves NO3 reduction increased with increasing the temperature at all NO3 levels, while in Barley NO3 reduction increased with increasing the temperature until 25 C, while increasing the temperature over 25 C the NO3 reduction increased. For sucrose treatment [Table (2), figure (3&4)], the data shows that in Maize the effect of sucrose on increasing NO3 reduction was observed in low concecntration (3 mM). while in Barley it's increased NO3 reduction in high concentration (6,10 mM)


NO3 Reduction Percent (%):

In both Maize and Barley leaves, increasing ambient NO3 concentration decreased the percentage of NO3 reduction (with or without sucrose). For effect of temperature on NO3 reduction percent, increasing temperature until 25°C increased reduction percent, while increasing temperature over 25°C caused a decrease in NO3 reduction percent in both Barley and Maize plants [Table (1), figure (1&2)]. This effect of high temperature is more pounced in Barley than Maize leaves. This effect due to the effect of high temperature on nitrate reductase enzyme. Also Brown, 1978 found that plants with C4 photosynthesis produce more dry matter per mg nitrogen utilized than plants with C3 metabolism. It has been recently reported in spite of a saturating N supply, the youngest mature leaves of Corn contained little of NO3 reserve (Foyer et al 1998)

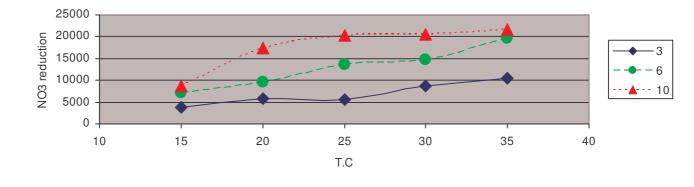
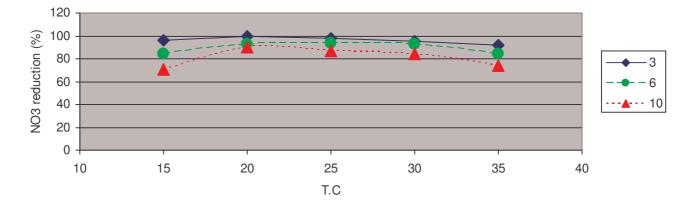
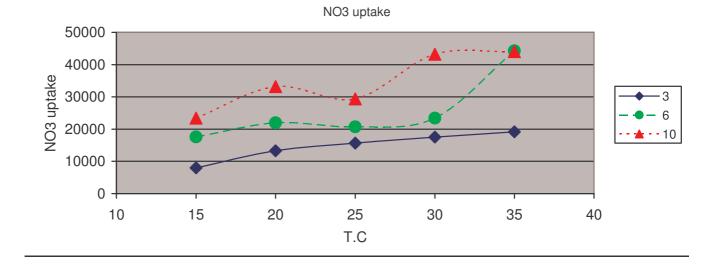
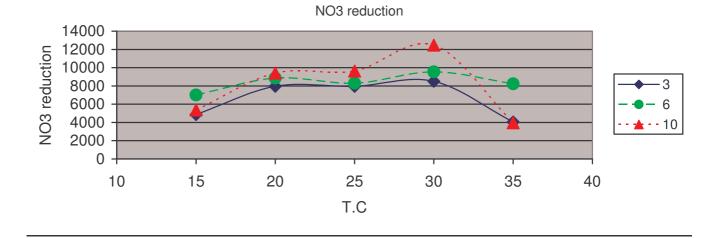
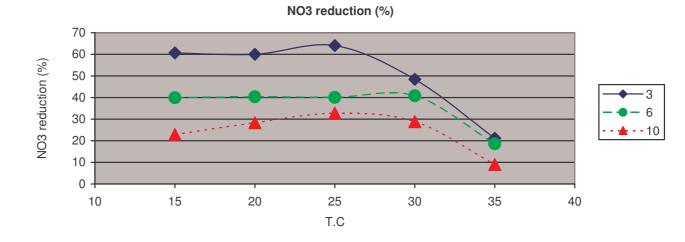

NO3 Conc.(m.mole)	T.C°	Corn			Barley		
		NO3	NO3	NO3	NO3	NO3 red.	NO3 red.
		uptake	red.	red. (%)	uptake		(%)
		uM			uM		
3.0	15.0	4028.5	3861	95.84	8010.9	4861	60.68
	20.0	5842	5821	99.64	13271	7961	60.03
	25.0	5685	5588	98.29	15669	7967	64.06
	30.0	9056	8619	95.17	17550	8500	48.43
	35.0	11395	10437	91.59	19154	4056	21.17
6.0	15.0	8439.3	7137	84.57	17571.9	7013	39.91
	20.0	10258	9521	92.82	21967	8871	40.38
	25.0	14535	13549	93.21	20699	8294	40.07
	30.0	15958	14823	92.89	23423	9547	40.76
	35.0	23332	19637	84.16	44253	8225	18.59
10.0	15.0	12389	8773	70.81	23402	5351	22.87
	20.0	19137	17333	90.57	33173	9413	28.37
	25.0	23182	20219	87.21	29407	9634	32.76
	30.0	24342	20512	84.27	43191	12471	28.87
	35.0	29386	21710	73.88	44016	3965	9.01

 Table (1) effect of NO3 concentration & temperature on NO3 uptake, reduction & reduction (%)

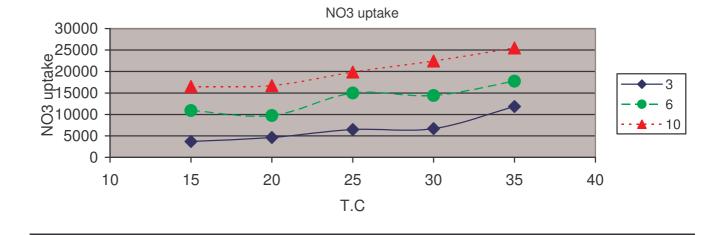


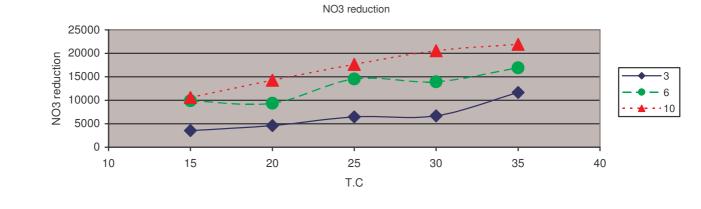

NO3 reduction




NO3 reduction (%)

Fig(1) effect of NO3 concentration & temperature on NO3 uptake , reduction & reduction (%) of Corn plant





Fig(2) effect of NO3 concentration & temperature on NO3 uptake , reduction & reduction (%) of Barley plant

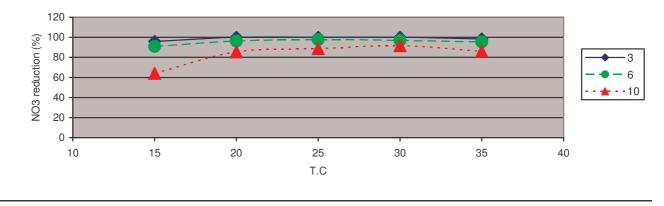
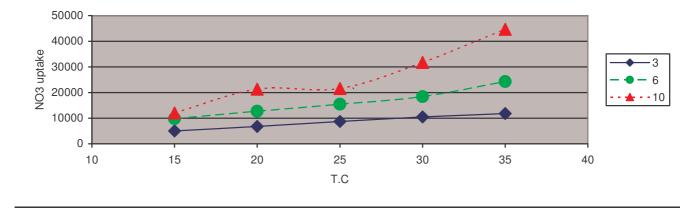
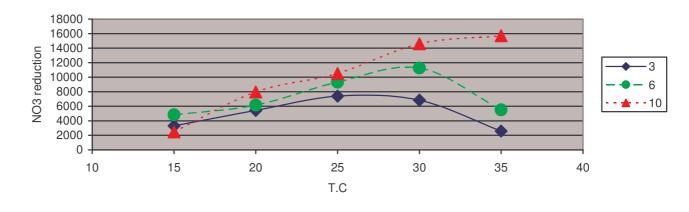

Suc(%)	NO3.Conc(m.	TC0	Corn			Barley		
	mole)		NO3	NO3	NO3	NO3	NO3 red.	NO3
			uptake	red.	red. (%)	uptake uM		red.
			uM			_		(%)
		15.0	3680	3527	95.84	5049	3307	65.50
	3.0	20.0	4617	4617	100	6764	5437	81.27
		25.0	6463	6463	100	8734	7405	84.78
		30.0	6684	6687	100.04	10474	6831	65.22
		35.0	11845	11651	98.36	11796	2579	21.86
1.0%	6.0	15.0	10883	9894	90.91	9798	4829	49.29
		20.0	9722	9356	96.24	12713	6163	48.48
		25.0	14993	14637	97.63	15466	9316	60.23
		30.0	14402	13952	96.88	18446	11273	61.11
		35.0	17739	16917	95.37	24326	5520	22.69
	10.0	15.0	16518	10602	64.18	12054	2476	20.54
		20.0	16724	14285	85.42	21353	7982	37.38
		25.0	19880	17648	88.77	21601	10522	48.71
		30.0	22430	20563	91.68	31781	14591	45.91
		35.0	25478	21917	86.02	44657	15722	35.21

Table (2) effect of NO3 concentration & temperature & sugar(1%) on NO3 uptake , reduction & reduction (%)





Fig(3) Effect of NO3 concentration , temperature & sugar (1%) on NO3 uptake , reduction & reduction (%) of Corn plant

NO3 reduction

NO3 reduction (%)

Fig(4) Effect of NO3 concentration , temperature & sugar (1%) on NO3 uptake , reduction & reduction (%) of Barley plant

DISSCUSION

Nitrate reduction was essentially idendinitical to uptake in response to ambient nitrate. This shows the strong regulatory effect that nitrate uptake has on its subsequent reduction by furnishing the nitrate flux into the plant (Chantartwong et al ,1976). Rate of nitrate assimilation based on the disappearance of nitrate from detached leaves preloaded with nitrate may be confounded by the different nitrate pools found in plants as it is recognized that cell of higher plants have both metabolic (easily accessible and cytoplasmic) and storage (probably vacualar) pools (Aslam et al.1976) they indicated that after leaves are excised and removed from the roots supplying nitrate, nitrate is depleted in cytoplasmice pools by both reduction and movement into a storage pool (vacular). Efflux of nitrate from the vacule back into the aytoplasm could then regulate the rate of nitrate reduction. Finally it mean that the seedling were capable of lowering their steady-state rates of uptake and reduction. It's clear from data that corn leaves more efficiency than Barley in adaptation to high ambient NO3 concentration .For temperature effect on nitrate reduction percent increased when the temperature raised from 15°C to 25°C in both plants. But increased temperature from 25°C to 30 °C, the reduction percent decrease and big decrease with raising the temperature to 35°C, this maybe inrelation to nitrate reductase activity. (Hallmark & Huffaker ,1978) observed an increase in enzymatic activity occurred from 0°C to 40°C above which decrease occurred, but in our study the harmfull effect of temperature begin at 30°C.Also high temperature affected the photosynthesis by altering the excitation energy distribution by changing the structure of thylakoids (Berry and Bjorkman, 1988) and by changing the activity of he calvin cycle and other metabolic processes. Also Maize (C4) plants more efficience than Barley (C3) plants in nitrate reduction percent. (Hallmark & Huffaker ,1978) found sudangrass seedling pretreated in nitrate reduced 80 to 100 of nitrate taken up. While for Barley (Chantarotwong et al 1976) and wheat (Ashley et al 1976) reduced about 35% of that taken up, from this data in Maize we concluded that nitrate reduction was approximetly equal to uptake (reduction percent 90-100%), while in Barley the nitrate uptake bigger than the reduction (reduction percent not more than 60%). Also it clear from the results that sucrose addition to the nutrient solution improve the efficiency of Barley to reduce NO3 uptake.

REFERENCES

Ashley,D.A.,Jackson,W.A.and Volk,R.J.(1976).Nitrate uptake and assimilation by wheat seedlings during initial exposure to nitrate_plant physiol.55:1102-1106

- Aslam ,M.,Oaks,A.and Huffaker,R.C.(1976). The effect of light and glucose on the induction of nitrate reductase and on distribution of nitrare in etioleated Barley leaves.Plant physiol.58:588-591
- Berry, J., and Bjorkman, o. (1980). Photosynthetic response and adaptation to temperature in higher plants. Annu. Rev. plant physiol 31:491-543
- Cantliffe,J.1972. Nitrate accumulation in spinach grown under different light intensities-Am.sec.Hortic.Sci.J.97:152-154
- Chantarotwong,W.,Huffaker,R.C.,Miller,B.L. and Granstedt,R.C.(1976).In vivo nitrate reductase activity in relation to nitrate uptake,nitrate content,and in vitro reductase activity in intact Barley seedling.Plant physiology 57:519-522
- Ezeta,F.N. ,and Jackson,W.A.(1975).Nitrate translocation by detopped corn seedlings.plant physiol.56:148-156
- Hallmark,W.B. and Huffaker,R.C.(1978). The influence of ambient nitrate,temperature and light on nitrate Assimilation in sudangrass seedling physiol plant 44:147-152
- Hoagland,D.R. and D.I.Arnen (1950):The water culture method for growing plants without soil. Californua agriculture exp. Station cin NO:347
- Lawlor, D.W., Boyle, F.A., Kendall A.C. and Keys, A.J.J of exp. Botany Vol.38 no3 :378-392
- Oaks, A. (1994): Efficiency of nitrogen utilization in C3 and C4 cereals. Plant physiol. 106, 407-414
- Oaks,A.and Li,X.Z.(1994):Induction and turnover of nitrate reductase in zea mays .Influence of light.Plant physiol.106,1145-1149.
- Pastenes.C.and Horton,P.(1996).Effect of high temperature on photosunthesis in Bean.I Oxygen exolution and chlorophyll fluorescence .plant physiol.122:1245-1251
- Pollock, J., and Rees, T.A. (1975). Activities of enzymes of suger metabolism in cold-stroed tubes of solanum tuberonum. Phytochemistry 14:613-618
- Willis, A.J., and Yemm, A.W. (1955). The respiration of Barley plants. VII. Nitrogen assimilation and the respiration of the root system. Newphytol. 53:164-181