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ABSTRACT 

This work aimed to evaluate mineralization rates of the five most common biosolids (digested sludge, composted 

sludge, limed sludge, heat-dried sludge, and solar-irradiated sludge) when incubated to two tropical soils - a 

Spodosol and an Oxisol soil.  Fresh sludge and stabilized biosolids were mixed with soil samples at 0.5, 1.0, 2.0, 

4.0, 6.0 and 8.0 dry t biosolids/ha and incubated at 25oC in a high humidity chamber (95% air moisture), at 12 

hours light/day, during 23 weeks for a non-leaching experiment. Results have showed that all the stabilization 

processes altered the capacity of the fresh sludge to release mineral-N. Except solar-irradiated sludge, the 

stabilization processes hindered the release and accumulation of mineral-N in soils. Composting and CaO-liming 

were the processes that most reduced the release of mineral-N. Mineralization rates and mineral-N release from 

biosolids were always higher in the Ferrosol compared to Spodosol soil.  

INTRODUCTION 

The idea of applying organic matter, primarily containing nitrogen (N) and phosphorus (P), 

back into the natural cycle forms the basis of using sludge on land (Frank, 1998). There is actually a 

wide spectrum of sewage products internationally referred as biosolids that have been reported to 

improve soil physical and chemical conditions and increase plant yield (Cameron et al., 1996).  

 

Besides the significant agronomic benefits that biosolids can provide when applied to land, its 

use frequently encounters apprehension and even strong opposition from the general public (Forste, 

1996). The reasons according to Sparkes (1990) are not only due to nuisance problems and pathogenic 

contents in sewage materials, but also to concerns on environmental hazards from high biosolids N 

and P concentrations. For such reasons, the United States Environmental Protection Agency (USEPA) 

has addressed potential hazards represented by disposal and beneficial use of sewage materials in its 

Title 40 of the Code of Federal Regulations (CFR), Part 503.  It is a risk-based rule to protect public 

health  and the environment, which describes sludge stabilization processes (sludge digestion, 

composting, lime stabilization, heat treatment, and solar irradiation). Stabilization processes can make 

biosolids safe enough for their beneficial use,  and for the sake of groundwater protection, land 

application rates are based on matching biosolids-N with crop N-needs, namely N-agronomic rate 

(USEPA, 1995). 
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Policies worldwide will require in the next years a more intensive management of biosolids-N 

to ovoid deleterious impacts of on the environment (Maguire et al., 2000). The release of nutrients 

from mineralization of biosolids is therefore an important issue in plant nutrition and environmental 

management. Several authors stress the importance of matching the amount of nutrients available and 

delivered through time with crop demands in order to avoid either limitations on plant growth or losses 

of excess nutrient to surface and groundwater (Sims, 1990; Reed et al. 1995; Epstein 1997).  

 

Laboratory incubation experiments have showed sewage sludge to be highly mineralizable 

(Willett et al. 1984). But sewage sludge stabilization processes aim to make it less putrescible, and 

mineralization of different stabilized biosolids probably present different capacities to release 

nutrients. Even mineralization rates of aerobically digested sludge are higher than of anaerobically 

digested sludge as the latter is more stable (Munn 1995).  

 

When biosolids are applied to land, mineralization and nutrient transformations occur in 

combination with other soil processes. Mineralization rate and fate of nutrients will then depend on the 

soil type and site conditions. O'Dowd et al. (1999) stated that mineralization is a major process 

influencing the supply of N to plants and for leaching. Procedures involving the determination of N 

mineralized during incubation are considered the most satisfactory method used to estimate 

mineralization of organic materials in soils (Serna & Pomares 1991; van Kessel et al. 2000). The 

potential mineralization rates of different stabilized biosolids and their behavior after mixing with 

different soils have to be investigated for their appropriate beneficial use (Maguire et al., 2000). 

 

Thus, this work aimed to evaluate mineralization rates of the five most common biosolids 

(digested sludge, composted sludge, limed sludge, heat-dried sludge, and solar-irradiated sludge) when 

incubated to two tropical soils – a Spodosol and an Ferrosol soil.  

MATERIALS and METHODS 

Sludge Stabilization 

A 500 kg sample of tertiary biological domestic sewage sludge was collected from a 

wastewater treatment plant at Bendigo shire, Victoria – Australia. The sewage sludge was analyzed in 

triplicate for gravimetric water content (105oC for 48 hours), bulk density (BD) (Rayment & 

Higginson, 1992), total carbon (total-C), total nitrogen (total-N), mineral nitrogen (mineral-N), total 

phosphorus (total-P), and available phosphorus (available-P). The fresh sewage sludge (Table 1) 

presenting 878 g kg-1 moisture, BD = 1.2 Mg m-3, and C/N ratio = 6.2 was mixed with hardwood 

sawdust (96 g kg-1 moisture, BD = 0.3 Mg m-3, and C/N ratio = 668) and woodchips (bulk agent) to 

achieve a C/N ratio = 25:1. Three 450 L composting piles were pitched on a sheltered cement 

pavement, run at 35oC - 65oC for 34 days, let to mature for another 60 days and sieved at 2 mm. Lime 
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treatment used CaO at 30% rate to sludge dry solids (weight/weight). Heat drying was performed in a 

furnace at 250oC until constant weight. The heat-dried sludge was ground and passed through a 2 mm 

sieve. For the solar irradiation process, three 10 kg fresh sludge samples were stored in freely drained 

plastic bowls under transparent plastic-covers and sunny conditions for 14 days during Melbourne’s 

summer, with daily temperatures ranging from 12.8oC to 26.5oC. The stabilization criteria established 

in USEPA (1995) were achieved in all the employed processes. All stabilized biosolids were analyzed 

in triplicate for total-C, total-N, mineral-N, total-P and available-P using the same analytical methods 

for the fresh sewage sludge. Results are showed in Table 1. Analysis of variance and Tukey test were 

performed in GenStat® for Windows 5th edition. 

 

Soils 

Two contrasting Australian soils were selected to be amended with the biosolids: a 

humosesquic, aeric Podosol and an acidic, mesotrophic Ferrosol (Isbell, 1996). The soils are 

respectively an Orthod Spodosol and an Ustox Oxisol according to USDA (1999).  A 200 kg sample 

of each soil was collected from nearby Melbourne, allowed to air dry for 2 weeks, and passed through 

a 4 mm sieve.  

 

Mineralization Experiment 

Fresh sludge and stabilized biosolids were mixed with soil samples of 1.5 kg amended at 0.5, 

1.0, 2.0, 4.0, 6.0 and 8.0 dry t biosolids/ha and placed in triplicate in 1.7 L free-draining pots. 

Amended-soils were wetted with deionized water to their pot capacity, as described in Cassel & 

Nielsen (1986), and covered with plastic lids containing three 4-mm holes. Pots were incubated at 

25oC (±1oC) in a high humidity chamber (95% air moisture), at 12 hours light/day, during 23 weeks 

for a non-leaching experiment. Three pots containing 1.5 kg blank-Podosol soil and three with blank-

Ferrosol soil were placed together with the others for control purposes. Soils were mixed prior to each 

sampling, which occurred on day 0 and in the 1st, 3rd, 7th, 15th and 23rd weeks after the experiment 

started. Pots were randomized weekly and samples were sprayed on surface with deionized water 

every second week to replace moisture losses. 

 

Laboratory Analysis       

Blank and amended soil samples were collected and placed in a 5 oC cold room (±1oC) for the 

analysis of mineral-N within 48 hours after sampling. A Carbo-Erba NA 1500 analyzer was used to 

measure total-C and total-N by the dry combustion method. Mineral-N was analyzed by the Kjeldahl 

steam distillation method for ammonium-N (NH4
+-N) and nitrate-N (NO3

--N) (Rayment & Higginson, 

1992). Mineralization rates were accounted based on mineral-N released in the amended soils.  
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Analysis of Data 

Data on mineral-N concentrations during soil incubation were set on graphics and regressions 

were drawn for accounting mineralization rates. N-mineralized throughout 23 weeks was summed up 

to determine the potentially available-N (PAN). PAN can be used by plant or leached down into soil 

profile was calculated according to Pierzynski (1994) and Barbarick & Ippolito (2000): 

 

PAN = NO3
--N + X NH4

+ - N + Y Organic-N                                             Equation 1 

 

where X is fraction of NH4
+-N that does not volatilize (often assumed to be 1) and Y is the fraction of 

organic-N that mineralizes. Organic-N was calculated according to Pierzynski (1994): 

 

Organic-N = total-N - (NO3
--N + NH4

+-N)                                               Equation 2 

 

All data were converted to oven-dry basis and statistical analyses were done in Minitab 12.1 and 

Systat for Windows software. 

 
Table 1: Some agronomic characteristics of the biosolids.  

Parameter 
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 _____________________dry weight basis _________________________ 

Total-C (g kg-1) 404c 283a 303b 389c 406c 

Total-N (g kg-1) 65.1c 15.9a 40.1b 64.8c 65.3c 

C/N ratio (w/w) 6.2a 17.8c 7.5b 6.0a 6.2a 

Total-P (g kg-1) 72.1c 24.2a 50.6b 72.5c 72.6c 

Mineral-N (mg kg-1) 624d 277b 93.8a 356c 803e 

Available-P (mg kg-1) 268c 377d 11.9a 678e 199b 

Bulk density (Mg m-3) 1.2c 0.4a 1.4d 0.6b 1.3cd 

 _________________________wet weight basis________________________ 

Gravimetric water (g kg-1) 878e 551b 754c 101a 819d 

pH [1:5 water (w/v)] 6.4b 6.1ab 11.9d 5.8a 7.4c 

Means (n = 3) with same letter within rows are not statistically different by the Tukey test (p < 0.05) 
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Table 2: Total-N applied to air-dry soils, based on their contents in biosolids  

Equivalent 
dry t/ha 

Fresh 
sludge 

Composted 
sludge 

30%-CaO 
sludge 

250oC-dried 
sludge 

Irradiated sludge 

Total-N applied to soils as biosolids (mgN kg-1 soil) 
0.25 8.1 2.0 5.0 8.1 8.2 
0.50 16.3 4.0 10.0 16.2 16.3 
1.0 32.6 8.0 20.1 32.4 32.7 
2.0 65.1 15.9 40.1 64.8 65.3 
3.0 97.7 23.9 60.2 97.2 98.0 
4.0 130.2 31.8 80.2 129.6 130.6 
5.0 162.8 39.8 100.3 162.0 163.3 
6.0 195.3 47.7 120.3 194.4 195.9 
7.0 227.9 55.7 140.4 226.8 228.6 
8.0 260.4 63.6 160.4 259.2 261.2 

RESULTS and DISCUSSION 

Soils amended with organic wastes are usually reported to increase mineralization rates due to 

the increase of available organic components and inoculation with saprophytic microorganisms 

(Siegenthaler & Stauffer 1991; Pascual et al. 1997a; Fliessbach et al. 2000). Mineralization rates in 

both soils were boosted after application of biosolids (Figures 1 - 5).  

 

The primary factors likely to control decomposition and release of nutrients from incorporated 

biosolids are application rate, substrate quality and interactions with bacteria, fungi and climate (Mary 

et al. 1996; Robinson & Polgase, 1996). In that respect, the mineralization of all biosolids in Podosol 

and Ferrosol soils was highly influenced by the two different soils. Such a soil dependency was 

studied by Soni & Singh (1994) who evaluated the capacity of different soils to mineralize sewage 

sludge.  

 

Concentrations of mineral-N in the Podosol soil treated with fresh sludge never reached 

treated-Ferrosol soil’s N-concentrations during the 23 weeks of incubation, despite the equivalent rates 

of biosolids-N applied to both soils (Table 2). Incorporation of different rates of fresh sludge in the 

Podosol and subsequent mineralization brought mineral-N concentrations to 6.6 - 15.7 mg mineral-

N/kg soil which accounts for a 5 - 6 fold increment in mineral-N concentrations relative to control-

soil. The higher value is similar to 14.7 mg mineral-N/kg soil present in the unamended-Ferrosol soil 

(Figure 1b). Therefore, Podosol soil presented a limited potential for sewage sludge mineralization 

compared to the Ferrosol soil (Figures 1a and 1b).  

 

Mineral-N concentrations in the Podosol treated with fresh sludge increased in a linear fashion 

(Figura 1a), but there was no significant difference of applying 0.5 or 1.0 dry t/ha to Podosol soils 

after 23 weeks of trial as both rates ended at mineral-N concentration of 6.7 mg kg-1. The same applies 

to the range 2.0 - 6.0 dry t/ha (11.8 mg kg-1) but the 8.0 dry t/ha rate finished the trial at mineral-N 
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concentrations significantly higher than the 2 - 6 dry t/ha range. However, for a 16 times increasing in 

application rate (0.5 � 8.0 dry t/ha), mineral-N concentration increased only 2.4 times (6.6 mg kg-1 � 

15.7 mg kg-1 soil). Fresh sludge proportionally mineralized more in Podosol at low application rates 

(0.5 - 2 dry t/ha) than at the highest ones (6 - 8 dry t/ha). Mary et al. (1996) also reported relatively 

higher mineralization rates for the lower application rates in their work. 

 

Ferrosol soil samples treated with fresh sludge increased N-concentrations 3 - 5 fold during 

incubation (Figure 1b). The 4.0 - 8.0 dry t/ha range delivered enough mineral-N to increase 

concentrations high enough to support crops (Rashid & Memon, 1996) yet from the 7th week. Thus, 

this biosolid may be able to totally substitute N-fertilizer in this soil. The highest 8.0 dry t/ha ended the 

trial at 58.9 (±4.1) mg mineral-N kg-1 soil, which is a level suitable for most of the crops. Even the two 

lowest rates (0.5 - 1.0 dry t/ha) ended the trial at mineral-N concentrations (19.8 mg kg-1) that Rashid 

& Memon (1996) heeds as suitable for most crops. 

 

A common aspect of organic matter mineralization curves is the stabilization of cumulative 

mineral-N showing either mineralization stopped or significantly reduced after a certain period 

(Dendooven et al. 1995). As curves on Figures 1a and 1b are rather linear, the mineralization of the 

fresh sludge would probably continue in both soils if a longer time was given. The long-term 

mineralization of sewage sludge in soils was demonstrated by Cox & Whelan (2000) who reported N 

from sewage sludge incorporated to a loamy clay soil still present after five years. 

 

The regression of mineral-N concentrations on time showed an increasing of 0.6 mg mineral-

N/kg soil/week for each tone of fresh sludge dry solids applied to Ferrosol soil (R2 = 0.95). For 

Podosol soil there was an increasing rate of 0.2 mg mineral-N/kg soil a week at the same 1 dry t/ha 

application rate (R2 = 0.92) which made fresh sludge to mineralize three times quicker in the Ferrosol 

than in the Podosol soil. For the highest 8.0 dry t/ha tested in this work, such difference reached 3.8 

times in favor to the Ferrosol.  

 

Podosol and Ferrosol soils showed different mineralization patterns and rates as responses to 

equal application rates of composted sludge (Figures 2a and 2b). Mineral-N quickly increased in 

Podosol soil within three weeks of incubation (Figure 2a) while it increased mostly in the Ferrosol 

after the fifteenth week of trial (Figure 2b). Organic matter incorporated to soils contains fractions 

with weekly, monthly, and annual turnover rates and it seems that the Podosol was able to mineralize 

only the light organic matter fraction. Whalen et al. (2000) explain that the exhaustion of the most 

readily available-C usually slows down organic matter degradation.  
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Various authors cite the two stages of composted sludge mineralization in soils as a result of 

its highly stabilized forms of nutrients (Rodrigues et al., 1995). Van Kessel et al. (2000) describe the 

compost’s mineralization as biphasic because of the presence of a readily mineralizable organic pool 

of nutrients and a second slowly mineralizing pool. Under Podosol soil conditions, the fraction that 

quickly mineralized made greater contribution to inputs of mineral-N in 23 weeks, that is common in 

soils having low potential for organic matter mineralization (Whalen et al. 2000). In Ferrosol soil, 

mineral-N increased 1.5 times in the first 15 weeks trial and over twice from this to the 23rd week.  

 

Although mineralization rates of composted sludge in Ferrosol soil were much higher, doses 

0.5 -1.0 dry t/ha did not significantly (p = 0.05) increase mineral-N relative to the control-Ferrosol 

(Figure 2b). Control-Ferrosol soil increased mineral-N from 5.0 (±0.2) to 14.7 (±1.8) mg kg-1 in 23 

weeks of incubation, whilst 1.0 dry t/ha amended-soils departed from 5.3 mg kg-1 to reach 15.3 mg kg-

1 after the same period. Thus, Ferrosol had to receive at least 2.0 dry t/ha of composted sludge to 

significantly increase mineral-N concentrations by approximately 30%. Doses of 6.0 and 8.0 dry t/ha 

could increase mineral-N by 40% and 65%, respectively, relative to the control-Ferrosol.  

 

Mineralization rates of composted sludge in sandy soils are frequently reported as low: 10% 

after 160 days incubation at 25oC in Smith et al. (1998b) and less than 20% after a year at 14oC in 

Leifeld et al. (2001). Saviozzi et al. (1999) consider composted sludge more adequate to restore soil 

organic matter than sewage sludge as the former lasts longer in soil as a result of its higher degree of 

stabilization.  Composted sludge has mineralized twice as quicker in the Ferrosol than in the Podosol 

soil.  

 

The mineralization of 30%-CaO sludge in soils occurred mostly until the 7th week of 

incubation, from which mineral-N increased little (Figure 3a and 3b). The 30%-CaO sludge showed 

amongst the biosolids in this work the highest mineralization rates in Podosol soil: mineral-N doubled 

each week until the 15th week and from this mineral-N increased a further 20%. Concentrations of 

mineral-N in Podosol samples treated with 30%-CaO sludge increased from 4 to 6 times during 

incubation and reached values up to 21 times higher compared to control. 

 

According to Sloan & Basta (1995), the liming of sewage sludge usually enhances 

mineralization rates when pH set within 5 - 7. But the two highest application rates (6.0 and 8.0t dry 

solids/ha) were exceptions as most of the mineralization occurred between the 7th and 15th weeks. It 

was probably a pH influence since soil pH increased pH to 7.0 - 7.5 while lower rates never increased 

pH beyond 6.5.  

 



 

 148 

A high pH buffering capacity of Ferrosol soil enabled it to receive up to 8.0 dry t/ha of 30%-

CaO sludge without significantly change its pH. It suggests this soil could receive higher loads of 

limed-sludge without major changes in pH related-chemical characteristics, such as P availability. 

However, Ferrosol samples amended at 0.5 dry t/ha ended the trial having mineral-N concentrations 

approximately 10% lower than the control-Ferrosol soil. Application rates between 1.0 - 4.0 dry t/ha 

could not significantly increase mineral-N relative to control. A significant 8% mineral-N increase (p 

= 0.05) started to occur from 6.0 dry t/ha rate. At 8.0 dry t/ha rate, mineral-N increased by 35% 

relative to the control-Ferrosol (Figure 3b).  The 30%-CaO sludge´s capacity to increase mineral-N in 

Ferrosol remained at one-third compared to the fresh sludge.  

 

Overall, a dry tone of 30%-CaO sludge increased mineral-N at 0.2 mg/kg soil/week in the 

Podosol and 0.4 mg/kg soil/week in Ferrosol soil. The former rate is similar to fresh sludge in the 

Podosol soil but the last one is approximately half the mineralization rate of fresh sludge in the 

Ferrosol Therefore, lime enhanced mineralization in the Podosol soil and delayed it in the Ferrosol 

soil.  

 

The 250 oC-heat drying process certainly sterilized fresh sludge and deprived it of 

microorganisms. Enzymatic activities to break down organic components into available nutrients are 

highly dependable on microbial activity (Pascual et al. 1997a). Possibly due to shortage of 

microorganisms and lower dissolution capacity, a tone of 250oC-dried pellets reached only 54% of 

mineral-N concentrations in the Podosol compared to the fresh sludge, despite both biosolids have 

similar contents of nutrients at dry matter base (Table 1). Figures were better in the Ferrosol as 

mineral-N reached 61% of fresh sludge’s concentrations.  

 

Despite of it, Podosol soil responded well to the incorporation of different rates of 250oC-dried 

sludge. There was a linear increase in mineral-N through the time from application rates of 4.0 dry 

t/ha. Application rates � 2.0 dry t/ha resulted in very gentle slopes as the release of mineral-N was 

very slow (Figure 4a). The highest 8.0 dry t/ha rate finished the trial at 12.3 (±0.8) mg kg-1, which is 

approximately three times higher than the control and 30% higher than the amount released by 4.0 - 

6.0 dry t/ha rate.  

 

Mineralization of 250oC-dried sludge in the Ferrosol showed a similar pattern to that shown 

by the composted sludge. Mineral-N increased at higher rates after 15 weeks of incubation than in the 

first half of trial. However, the 250 oC-dried pellets increased Ferrosol’s mineral-N concentrations 

46% higher than composted sludge, thta is a consequence of the pellets’ higher initial mineral-N 

content (Table 1). Similar fact occurred in the Podosol, where mineralization rates of dried-pellets 

were half compared to the composted sludge, but mineral-N concentrations increased 40% higher in 
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Podosol treated with the former biosolid. Therefore, from the practical point of view, both of biosolids 

mineralize slower in soils than their raw material (fresh sewage sludge). But the 250oC-dried pellets 

were more effective to increase mineral-N concentrations than equivalent dry tonnage of composted 

sludge.  

Solar-irradiated sludge at 6.0 - 8.0 dry t/ha application rates were the treatments that most 

increased mineral-N in the Podosol soil, especially because these two highest doses showed a 

distinguished increase in mineral-N concentrations relative to the lower application rates (Figure 5a). 

Controversially this biosolid had one of the lowest mineralization rates in this soil (Table 3) and its 

high mineral-N concentrations (Table 1) must be the cause of such a high mineral-N input. Mineral-N 

concentrations in the Podosol treated with solar-irradiated sludge reached up to 19.4 mg/kg soil 

against a value 36% lower for the fresh sludge at the same 8 dry t/ha application rate. Wen et al. 

(1997) also reported higher mineral-N concentrations in soils incubated with irradiated sludge than 

with fresh sludge.  

 

Ferrosol soil treated with solar-irradiated sludge reached similar N-concentrations and 

increasing patterns to the fresh sludge (Figures 1b and 5b). Both biosolids applied to Ferrosol linearly 

increased mineral-N through the 23 weeks to end the trial at the highest mineral-N concentrations in 

this soil (57.5 mg kg-1). According to Smith et al. (1998a), storage effectively stabilizes organic-N in 

sewage sludge making the organic matter more resistant to further mineralization in soil. This 

statement applies to the Podosol soil but for the Ferrosol, soil environment prevailed as these two 

biosolids showed the two highest mineralization rates in this soil. 

 

  
Figure 1a: Fresh sludge-amended Podosol soil in 
23 weeks incubation 

Figure 1b: Fresh sludge-amended Ferrosol soil in 
23 weeks incubation 
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Figure 2a: Composted sludge-amended Podosol 
soil in 23 weeks incubation. 

Figure 2b: Composted sludge-amended Ferrosol 
soil in 23 weeks incubation 
 

  

Figure 3a: 30%-CaO sludge-amended Podosol 
soil in 23 weeks incubation 
 

Figure 3b: 30%-CaO sludge-amended Ferrosol 
soil in 23 weeks incubation 

  

Figure 4a: 250oC-dried sludge-amended Podosol 
soil in 23 weeks incubation. 
 

Figure 4b: 250oC-dried sludge-amended Ferrosol 
soil in 23 weeks incubation. 

  

Figure 5a: Solar-irradiated sludge-amended 
Podosol soil in 23 weeks incubation. 
 

Figure 5b: Solar-irradiated sludge-amended 
Ferrosol soil in 23 weeks incubation 

 

6-8 tha

0.5- 4 t/ha

0

1

2

3

4

5

6

7

8

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
(m

g/
kg

 s
oi

l)

Blank-Podosol. Compost + Podosol.

8 t/ha

0.5-1 t/ha

2- 6 t/ha

0
3
6
9

12
15
18
21
24
27

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
(m

g/
kg

 s
oi

l)

Blank-Ferrosol Compost + Ferrosol

1-2 t/ha
0.5 t/ha

4-6 t/ha

6-8 t/ha

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
(m

g/
kg

 s
oi

l)

Blank-Podosol 30%-CaO + Podosol

6 t/ha

0.5 t/ha

8 t/ha

1-4 t/ha

0

3

6

9

12

15

18

21

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
(m

g/
kg

 s
oi

l)

Blank-Ferrosol 30%-CaO + Ferrosol

0.5-1 t/ha

2 t/ha

4-6 t/ha

8 t/ha

0

2

4

6

8

10

12

14

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
 

(m
g/

kg
 s

oi
l)

Blank-Podosol 250oC-dried + Podosol

 0.5 t/ha

1 - 2 t/ha

4 - 6 t/ha

8 t/ha

0
4
8

12
16
20
24
28
32
36
40

0 2 4 6 8 10 12 14 16 18 20 22 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
 

(m
g/

kg
 s

oi
l)

Blank-Ferrosol 250oC-dried + Ferrosol

0.5-2 t/ha

4 t/ha

6-8 t/ha

0
2
4
6
8

10
12
14
16
18
20
22

0 4 8 12 16 20 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
 (m

g/
kg

 s
oi

l)

Blank-Podosol Irradiated + Podosol

2 t/ha

0.5 -1 t/ha

4 t/ha

8 t/ha

6 t/ha

0

10

20

30

40

50

60

0 4 8 12 16 20 24

Time (weeks)

N
H

4+ -N
 +

 N
O

3- -N
 (m

g/
kg

 s
oi

l)

Blank-Ferrosol Irradiated + Ferrosol



 

 151 

Many patterns for the mineralization of biosolids have been described in the literature, since 

soil type, temperature of incubation, biosolids’ N content, C/N ratio, and time influence the kinetics of 

organic matter degradation (Dendooven et al. 1995; van Kessel et al. 2000). Zero-order and first-order 

functions can usually explain the biggest part of mineralization of organic materials added to soils 

(Dendooven et al. 1995; Mary et al. 1996; van Kessel et al. 2000). In this work, zero-order functions 

(linear equations) could explain from 71% to 99% of the mineralization of biosolids in both Podosol 

and Ferrosol soils.  

After 23 weeks of soil incubation, between 10% and 28% of organic-N in biosolids 

mineralized in the Podosol and from 32% to 82% in the Ferrosol soil (Table 3). Van de Graaff (1998) 

considers soil the most effective medium for mineralizing decomposable substances, which could be 

confirmed for biosolids, particularly when applied to Ferrosol soil. High mineralization rates of 

organic materials are frequently reported in soils presenting higher clay content (Fliessbach et al. 

2000), which is desirable for both the supply of nutrients to plants and degradation of hazardous 

organic substances.   

The highest percentage of organic-N mineralized in the Podosol refereed to the composted and 

30%-CaO sludge (Table 3). However, their lower N content resulted in PAN inputs inferior to that 

from fresh sludge. On the other hand, the high N content in 250oC-dried pellets showed the lowest 

mineralization rate in this soils and PAN input was half of that release by the fresh sludge. 

Approximately 17% of fresh sludge organic-N at 1 dry t/ha application rate had mineralized after 23 

weeks of incubation in the Podosol. This biosolid had the highest mineralization rate over the period 

and as a result, fresh sludge showed the highest PAN input in this soil. As far as a N-source is the 

concern, fresh and solar-irradiated sludge were the best options for the Podosol soil.  

Composted sludge applied to Ferrosol soil mineralized 82% of its organic-N but the 

potentially available nitrogen (PAN) input was one of the lowest measured (Table 3). Considering the 

initial values of mineral-N in compost-amended soils, mineralization of organic-N incremented at 

most an extra 2 mg kg-1 in Podosol soil and 9.5mg kg-1 in Ferrosol soil. The highest mineral-N 

concentration achieved in composted sludge-amended Podosol soil (6.6mg kg-1) is similar to the value 

showed by the 0.5 dry t/ha of fresh sludge in the same soil.  

Fresh and solar-irradiated sludge mineralized approximately half the organic-N in Ferrosol 

soil and PAN inputs were the greatest ones (Table 3). Despite only 32% of dried-pellets’ organic-N 

mineralized in Ferrosol soil, PAN input was higher than composted and 30%-CaO sludge in this soil. 

Pascual et al. (1997b) stated that different rates of mineralization amongst sewage materials are 

consequence of different stabilization processes. According to them, the less stable is an organic 

material the bigger the soil biological activity and its mineralization in soils. However, organic-N 

content was of greater importance in the Ferrosol for PAN input than the stabilization degree of the 

biosolids. 
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Ferrosol amended with biosolids presented a better C/N ratio range (23-30:1) than amended 

Podosol soils (12-20:1) for mineralization to occur. Thus, mineralization rates were correlated with 

C/N ratios (R2 = 0.56) in the Ferrosol but not in the Podosol (R2 = 0.002). Mary et al. (1996) pointed 

out the importance of appropriate soils’ C/N ratios to degrade organic materials. There was not any 

correlation between mineralization rates and total-N concentrations in both Podosol and Ferrosol soils 

besides it was drawn by Cox & Whelan (2000) in their work. The mineralization of biosolids in 

Ferrosol soil was more predictable and efficient relative to the Podosol soil.  Iakimenko et al. (1996) 

concluded that among various factors soil type was the most important for N mineralization of sewage 

sludge, followed by application rate.  

Mary et al. (1996) calculated that laboratory experiments underestimate field mineralization 

trials by 25% under northern France environment. Zagal (1994) concluded from his incubation 

experiment that amounts of N-mineralized in planted soil during 43 days were comparable to N-

mineralized in unplanted soils incubated for 210 days. Therefore, under planted field conditions 

mineralization rates will probably be higher than the results found here. 

Table 3: PAN in biosolids-amended soils at 1.0 dry t/ha after 23 weeks of incubation 
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Podosol soil 

Fresh  1.18 0.14 17% 0.24 5.6 

Composted 0.16 0.15 28% 0.20 4.6 

30%-CaO 2.55 0.0 25% 0.22 4.9 

250oC-Dried 1.15 0.02 10% 0.13 3.0 

Irradiated 1.05 0.0 13% 0.18 4.2 

Ferrosol soil 

Fresh  5.15 0.08 45% 0.63 14.5 

Composted 5.09 0.18 82% 0.43 9.9 

30%-CaO 6.13 0.0 40% 0.35 8.1 

250oC-Dried 4.96 0.06 32% 0.52 11.9 

Irradiated 5.08 0.0 52% 0.74 16.7 
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CONCLUSIONS 

All the stabilization processes used in this worked (composting, CaO-liming, heat-drying and 

solar irradiation) altered the capacity of the fresh sludge to release mineral-N. Except solar-irradiation, 

the stabilization processes hindered the release and accumulation of mineral-N. Composting and CaO-

liming were the processes that most reduced the release of mineral-N.  

 

Potentially available-N (PAN), percentage of organic-N mineralized, and mineralization rates 

were always higher in Ferrosol than in Podosol soil.  

 

Fresh and solar-irradiated sludge presented the highest PAN in Ferrosol soil. This soils treated 

with 250oC-dried sludge came on second place, followed by composted and 30%-CaO sludge. But not 

only the composted sludge released more mineral-N than 30%-CaO sludge in the Ferrosol, but also the 

former tends to keep increasing after 23 weeks whilst 30%-CaO sludge had already peaked before the 

end of the experiment. 

  

Except 30%-CaO sludge, the biosolids could not display their full mineralization potential due 

to the relative short-term experiment. The premature exhaustion of N from 30%-CaO sludge was a 

common characteristic in both soils. Despite the low capacity of composted sludge to increase 

mineral-N, it was the most degraded biosolid in both Podosol and Ferrosol soils. On the other hand, 

250oC-dried sludge mineralized little, but it has high amounts of N to be delivered on a longer-term 

basis. 
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