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ÖZET 

YANGIN ALGILAMA ROBOTUNUN GELİŞTİRİLMESİ 

Hilmi Saygın SUCUOĞLU 

Yüksek Lisans Tezi, Makine Mühendisliği Anabilim Dalı 

Tez Danışmanı: Prof. Dr. İsmail BÖĞREKCİ 

2015, 211 sayfa 

Bu tez çalışmasının amacı; özellikle endüstriyel alanlarda, erken yangın 

algılamada kullanılacak bir yangın algılama robotu tasarlamak ve imal etmektir. 

Bu robot; önceden belirlenen sanal güzergâh üzerinde engel algılama 

fonksiyonuyla ve yeniden programlanabilir hareket ünitesiyle devriye gezebilecek 

ve yangın kaynağını tespit edebilmek için ortam taraması yapabilecek şekilde 

tasarlanmış ve imal edilmiştir. Sistem; hareket planlama ünitesine tanımlanan 

programlar ile değişken devriye güzergâhlarını takip edebilme yeteneğine sahiptir.  

Robotun tasarım ve uygulama süreçleri şu şekildedir; mekanik sistemin tasarımı 

ve geliştirilmesi, elektronik sistemin tasarımı ve geliştirilmesi ve gerekli 

yazılımların hazırlanmasıdır. Mekanik sistemin tasarım ve geliştirilme sürecinde; 

taslak çizimleri, ölçülendirmeler ve üç boyutlu modelleme için bilgisayar destekli 

tasarım ve katı modelleme programları kullanılmıştır. Robotun taşıyıcı gövdesi; 

ucuz, sağlam ve kolay işlenebilir malzemeler olan ahşap ve sert plastik köpük 

kullanılarak imal edilmiştir. Robot sürüş sisteminde diferansiyel metot 

kullanılmıştır. Yarı otomatik robot dört adet fırçalı doğru akım motoru ile 

çalışmaktadır. Elektronik sistemin tasarımı ve geliştirilmesi sürecinde; hazır kart 

almak yerine ihtiyaca uygun elektronik veri kazanım ve kontrol devreleri 

tasarlanıp üretilmiştir. Bu devrelerin şematik diyagramı ve baskı devresi Proteus 

elektronik tasarım programı kullanılarak hazırlanmıştır. Bu devreler; motor 

hareketlerini kontrol etmekte ve dizüstü bilgisayar ile algılama üniteleri arasında 

bir köprü kurmakta kullanılmıştır. Yazılımların hazırlanma sürecinde; engel 

algılamada ve güzergâh takibinde kullanılacak akıllı yazılımlar geliştirilmiştir. 

Ayrıca daha güvenilir yangın algılama sağlamak için; çoklu sensör algılama ve 

değerlendirme algoritması geliştirilmiştir. 

Bu tezin sonucunda; özellikle endüstriyel alanlarda kullanılabilecek, çeşitli 

fonksiyonlara sahip bir yangın algılama robotu tasarlanıp imal edilmiştir. Yapılan 

testlerle; sistemin en fazla 100 cm mesafedeki yangını, robot 0,5 m/s hızla 

ilerlerken tespit edebildiği sonucuna varılmıştır. 

Anahtar Kelimeler: Data kazanım ve kontrol, Diferansiyel sürüş metodu, 

Yangınla mücadele, Çoklu sensör algılama ve değerlendirme, Sanal güzergâh 

takibi  
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ABSTRACT 

THE DEVELOPMENT OF FIRE DETECTION ROBOT 

Hilmi Saygın SUCUOĞLU 

M.Sc. Thesis, Department of Mechanical Engineering 

Supervisor: Prof. Dr. İsmail BÖĞREKCİ 

2015, 211 pages 

The aim of this thesis is to design and manufacture a fire detection robot that 

especially operates in industrial areas for fire inspection and early detection. Robot 

is designed and implemented to track prescribed paths with obstacle avoidance 

function through obstacle avoidance and motion planning units and to scan the 

environment in order to detect fire source using fire detection unit. Robot is able to 

track patrolling routes using virtual lines that defined to the motion planning unit. 

The design and implementation processes of the robot are as follow; the design 

and the development of mechanical, electronic systems and software. The design 

and the development of mechanical system; for the sketch drawings, dimensioning 

and solid state modeling of the robot, computer aided design and solid modelling 

computer programs were used. The carrier board of the robot is produced using 

wooden material and rigid plastic foam which are cheap, strong enough and easy 

to manufacture. Differential steering method is selected for semi-autonomous 

robot driving system and it is powered by four brushed DC (direct current) motors. 

The design and the development of electronic system; electronic circuits were 

designed and produced, instead of buying a commercial card. Both schematic 

diagrams and circuits of the data acquisition and control circuits are designed 

using Proteus electronic design program. These circuits are used to control the 

motion of the motors and establish a data flow between the laptop and the other 

peripheral sensing components. Software development; intelligent algorithms for 

obstacle avoidance and path tracking have been developed. A sensor data fusion 

algorithm for the sensors was also developed to get more reliable fire detection 

information. 

In conclusion; a fire inspection and detection robot with various functions to 

especially can be used in industrial areas was designed and manufactured. The 

functions of the robot were tested. It can be concluded that system is able to detect 

the fire source maximum 100 cm distance away while robot is moving with 0.5 

m/s forward speed. 

Keywords: Data acquisition and control, Differential steering method, 

Firefighting, Sensor data fusion, Virtual path tracking. 
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1. INTRODUCTION 

1.1. What is Robot? 

As strange as it might seem there is no standard definition for a robot. However, 

there are some characteristics and features can be used for counting a device or a 

machine as a robot. First of all a robot has to be aware of what is happening in its 

environment, needs to be able to move and powered by an energy source, if it is 

necessary a robot has to be smart enough to satisfy the requirement. Robots can be 

categorized according to their intelligence as follow; 

Manual robot is a system that can sense and convey the motion, gets energy from 

human power. For example, door hinge. When someone wants to open or close the 

door, it senses the motion from one side then conveys to other side and get the 

energy from human’s arm.  

Semi-autonomous system is able to do everything done by a manual robot. In 

addition, it has to complete tasks defined by a human. Therefore, sensors and 

control algorithms are employed for this system’s intelligence. For example, a 

remote controlled mobile robot should be able to understand commands and 

execute the task. Electrical power, batteries, etc. are used for energy consumption. 

The most important thing to counting a system as autonomous is decision 

mechanism. An autonomous robot can do everything done by the others and it 

makes decision in dynamic environmental conditions as well. For example, an 

UGV (Unmanned Ground Vehicle) is able to sense, consider and decide. 

Robots are used in wide variety of fields (Gupta et al., 2006). Robot manipulator 

also known as robot arm is used to perform tasks in industry such as welding, 

painting, palletizing etc. due to its power, rigid body, speed and accuracy. 

Recently; the usage area of the robots is shifted from the classical industrial 

manufacturing robot to service robot (Tajiti et al., 2013). Medical robot has 

invaded the field of medicine. Although this system hasn’t taken place of the 

medical personnel many robotic applications have emerged in medical area such 

as laboratory robots, surgery and training of surgery etc. Rehabilitation robot also 

has been used to help people with disabilities. Mobile robot is a system able to 

conduct tasks in changeable conditions and different places by a platform and 

locomotive elements. Locomotive system is varied according to operation 

environment. In the aquatic and aerial environments, propellers, screws and legs 

are generally used while; wheels, pallets and legs are used in terrestrial 

environment. 

The main purpose of this thesis is to design and produce a fire detection mobile 

robot and to test its system functions. This robot should be able to operate 

especially in industrial areas. So it has to have some system functions which can 
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meet the requirements of industrial usage. The system functions of the proposed 

robot are listed below; 

1. Motion planning and patrolling with the prescribed virtual path lines, 

2. Obstacle avoidance function, 

3. Scanning the environment for early fire detection and providing information. 

After implementation of indicated functions, required tests should be applied to 

system. The required tests are listed below; 

1. Virtual path tracking accuracy, 

2. Fire detection capability of the system while moving, 

3. Maximum and minimum fire detection distances. 

1.2. Problem Description 

An industrial fire is a type of disaster involving a conflagration that cause to 

irremediable harms in in industrial settings. Although firefighting is an extremely 

hard task it is still carried by human operators so fire-fighters put themselves in 

harm way while trying to rescue the victims and to get the under control the fire 

before it becomes graver. After starting of a fire it is almost impossible to control 

it and recover the damaged area. Therefore, the better way for firefighting is to 

inspect and detect it, before reached the point of no return. For this purpose, some 

early fire detection devices and methods have been developed but they have many 

disadvantages such as necessity of fixing of a wall or ceiling, inflexibility and high 

cost. This leads to necessity of usage of mobile systems also known as fire 

detection mobile robot. 

1.3. Motivation 

The relation between the outputs of the thesis study and real life applications is 

observed. The results are given below; 

1. Instead of fixed early fire detection system, using of a mobile fire detection 

robot can reduce the investment cost of fire protection systems in the industry. 

To establish a fixed fire detection system; many cameras, sensors and control 

center are required. This increases the investment cost. The proposed robot can 

be a prototype for the advanced systems which may take the place of fixed 

systems. 

2. Nowadays, the work safety in working areas especially in industrial areas is a 

hot topic discussed in everyday by everyone. Industrial fire and protection is 
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prime issue of the science of work safety. The proposed system can contribute 

the science of work safety. 

3. There are some early fire detection robot prototypes for industrial usage in 

literature but they operate with prescribed physical lines using optical sensing 

method. In this method; it is required to establish new tracking lines for every 

new working environment. With virtual path tracking; this problem can be 

solved. 

These results are motivated us to design and manufacture a fire detection mobile 

robot. 

1.4. Thesis Objectives 

The aim of this thesis is to design and implement a fire detection mobile robot that 

is able to patrol different areas, inspect and detect the fire occurrence. To complete 

these tasks there are some requirements; 

1. System should enable robot to carry different hardware and sensors. The 

proposed system is semi-autonomous so it needs various hardware and sensors 

such as batteries, computer, data acquisition and control unit and fire detection 

sensors. The carrier board of the robot should be robust and modular enough 

to carry them.  

2. System should have an intelligent obstacle avoidance function that robot can 

operate in working environment without any collision or interruption. 

3. Robot should be able to track the virtual path lines. 

4. System should have a fire detection unit which can provide reliable and 

accurate fire information. 

To meet these system requirements;  

1. Carrier board is manufactured using wooden material and plastic rigid foam 

which are robust enough to carry the loads, easy to manufacture and light. 

2. An obstacle avoidance unit is produced using two ultrasound sensors. In 

addition to this unit, an intelligent obstacle avoidance algorithm is developed 

which enable the robot to carry out its patrolling task without any collision or 

interruption. 

3. Instead of physical path line tracking, virtual path line tracking method is 

developed. The lines of the patrolling path are programmed to robot through 

DC motors control unit.  
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4. The fire detection unit is produced with three sensors; smoke, flame and 

temperature. Each of these sensors has its own false and misses probabilities. 

To reduce the miss and false alarm ratio and get more reliable results, three 

sensors are used and a sensor data fusion algorithm is developed. 

1.5. Overview of Thesis 

The outline of the thesis is as follows; 

 In the next chapter “Literature Review”; 

1. The industrial fires and statistics, early fire detection methods and devices are 

presented, 

2. Evolution of robotics, the related subjects and firefighting robots are 

described, 

In the third chapter “Material and Method”; 

1. Design goals and criteria, mechanical design process and manufacturing are 

presented, 

2. Selection criteria and specifications of hardware, details of the obstacle 

avoidance unit and fire detection unit are explained, 

3. Robot platform configuration and components are described, 

4. Data acquisition and control circuits design and implementation process is 

explained, 

5. General system architecture and details of functions are presented, 

In the fourth chapter “Results and Discussion”; 

1. The applied function tests are described, 

2. The results of function tests are presented and discussed, 

In the fifth chapter “Conclusion” 

1. The conclusion is studied. 
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In the last chapter “Recommendations and Future Works”; 

1. Recommendations and possible future works are discussed. 

1.6. System Overview 

In this section brief information about the presented robot is given. This section 

does not include the details of the system. The details of the system are described 

in next chapters.  

The technical specifications of the system are given in Table 1.1. 

Table 1.1. System specifications 

General Specifications 

Total Weight 1.5 kg (without notebook) 

Dimensions 400 mm x 300 mm x 200 mm (Length, 

Width, Height) 

Maximum Speed 0.5 m/s 

Battery Unit 3 cells LiPo (lithium polymer) battery unit 

Motor Operating Voltage 12 V DC 

Motor Power 32 Watt 

Motor Torque 2.6 Nm 

Minimum Fire Detection Distance 10 cm 

Maximum Fire Detection Distance 100 cm 

Data Acquisition and Control Unit Specifications 

Operating Voltage 5 V DC 

Microcontroller Model Atmega 32 

Number of microcontroller 3 pieces 
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Figure 1.1. Fire detection robot 
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2. LITERATURE REVIEW 

2.1. Industrial Fires 

Industrial fire is an industrial disaster which occurs in an industrial place and often 

but not always occurs with explosions. There are an unlimited number of materials 

and commodities caused to industrial fire disaster such as chemical products, 

rubber, plastic, petroleum, wood, clothes, computer parts, furniture etc. Despite 

knowledge of safety know-hows, industries all over the world still confront 

frequent explosion and fire hazards (Mishra et al., 2013). These types of fires 

generally results in environmental pollution and spreading of carcinogenic 

substances (Haukur et al., 2010). Fire accidents may occur for different reasons 

ranging from a machine error to personal mistake. The common causes of 

industrial fires are as follow (Anonymous, 2005); 

1. Storing the chemicals in unsuitable conditions 

2. Keeping flammable and combustible materials close to ignition sources 

3. Keeping incompatible chemicals close to each other 

4. Dirty flammable liquids 

5. Electrical equipment in bad conditions 

6. Overloading electric circuits 

7. Keeping hot equipment close to combustible materials 

8. Overheating electrical equipment 

9. Smoking 

10. Not keeping the work area free of thrash, combustible scraps and other debris 

11. Keeping machines dusty and oily 

12. Not reporting fire hazards 

2.1.1. Big Industrial Fires 

From history to today many industrial fires have occurred all over the world 

(Anonymous, 2010 a). Some of them are presented in this part of thesis study; 

 2012-Dhaka, Bangladesh, Fire disaster occurred in a clothing factory in which 

2,000 people work. Consequences of the disaster were death of 117 people, 
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injuries of 200 and destroying of material for $ 13 million and destruction of 

factory.  

2012-Tuzla, İstanbul, Turkey, Fire started with an erupted blaze in “Kayalar” paint 

factory on Tuesday Morning. Explosions occurred in factory building and created 

panic in the area. Fire caused to destruction of 32,000m
2
 closed areas and $ 200 

million financial damage. 

2010-Dhaka, Bangladesh, A garment factory with about 5,000 workers confronted 

a big fire disaster. 20 people died and thousands of people were injured. 

2007-Usak, Turkey, A big fire occurred in Textile & blanket factory “Aran 

Tekstil”. Fire took almost 4 hours and completely destroyed the 15,000 m
2
 closed 

area. 

2005-Bursa, Turkey, The fire started in a mattress factory at about 2:00 a.m. Fire 

caused many material and financial damage, five workers died in disaster.  

2005-Schofield, Wisconsin, USA, One worker died, many people were injured and 

three buildings were destroyed at a wood product manufacturer in fire. The cost of 

the disaster exceeded $ 1 million. 

2005-Sichuan, China, A chemical plant explosions and fire occurred in a chemical 

factory. Disaster caused many damages in factory and the entire city. Ten workers 

lost their life and 21 were injured seriously. 

2004- Hiroshima, Japan, The fire started in No.1 plant of “Mazda Motor Corp.” 

facilities and burned for about 6 hours. There were no injuries or death but 

shutdown cost was 1,000 vehicles and almost 2.7 billion yen. 

2004-Gresik, Indonesia, An explosion followed by a fierce fire in Indonesian 

petrochemical plant killed two and injured about 50 people. Many buildings 

burned down in city and the cost of disaster was about $ 75 million. 

2000-Enschede, Netherland, The fire occurred in a building in which 900 kg 

fireworks were stored. It led to an enormous explosion; 27 people died and 947 

were injured.  A 40 hectare area, 400 homes were destroyed and 1,500 buildings 

were damaged. 

2.1.2. Fire and Fire Safety Statistics  

Fire and Fire Safety statistics are organized using some studies about fire 

information. Fire information can be summarized as below (Brushlinsky et al., 

2006); 
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1. Fire service activities 

2. Fire safety products and materials  

3. Fire safety science 

4. Economic aspects of fire safety 

5. Fire education and training 

6. Fire safety technologies and related materials 

7. Methods of fire suppression 

Some statistical fire information (general fires) for Turkey; number of fires, losses 

of life and financial damages by years are given in Figures 2.1, 2.2 and 2.3 

respectively (Bekem et al., 2011).  
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Figure 2.1. Distribution of the number of fires by years 

 

Figure 2.2. Distribution of loss of life by years 
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Figure 2.3. Distribution of financial damages by years 
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“Fire Research Conference of the Division of Engineering of the National 

Research Council” proposed a fire research program in 1959 that emphasis on 

ignition, fire growth and fire spread. 

In the mid-1970s the performance of the smoke detectors and their effectiveness in 

residential environment were tested by “Illinois Institute of Technology Research 

Center”. The tests were performed in houses located in Indiana and evaluated 

based on “Escape Time” offered when the detector actuated. According to the 

experiments smoke detection on every level of home provided sufficient escape 

time in roughly % 90 of the fire scenarios. 

In 1997 a collaborative research program was developed by “The Fire Detection 

Institute”, “University of Maryland” and “National Research Council” to 

determine the efficiency of duct smoke detectors in fire alarm system design. 

Dilution effects, comparative driving forces and smoke ageing effects were 

investigated (Wayne, 2006). 

2.2.1.  Optical Flame Detectors 

Optical flame detectors have been used as a part of early fire detection systems for 

many years. An optical flame detector can see fire from long distance up to 65 m 

away and only 0.01mm
2
 in size without need to sense smoke or heat. Detector sees 

the flame extremely fast due to light speed. Thanks to these features, an optical 

flame detector is the first option for indoor and outdoor fire inspection and 

detection applications. 

Various types of optical flame detectors are utilized in various spectral bands that 

are emitted by the fire. Optical flame detectors usually employ several optical 

sensors that work in specific spectral ranges and these sensors record the incoming 

radiation at the selected wavelength. Optical flame detectors are categorized as 

follow (Anonymous, 2009); 

1. UV (Single sensor type) 

2. IR (Single sensor type) 

3. UV/IR (Dual sensor type) 

4. IR2 (Dual IR sensor type) 

5. IR3 (Triple IR sensor type)  

6. CCTV (Image processing type) 

To analyze the recorded radiation, some pre-determined methods are used. These 

are; 
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1. Flickering frequency analysis 

2. Threshold energy signal comparison 

3. Mathematical ratios and correlation between various signals 

4. Comparator techniques (and-gate techniques) 

5. Correlation to memorized spectral analysis 

Several of these techniques are employed by the modern optical flame detectors in 

order to provide accurate and reliable information. 

2.2.1.1. UV Flame Detection (0.1-0.4 µm wavelength) 

The UV (Ultraviolet) spectral signature of some flames in the range between 100 

and 400 nm has a pattern that can be easily recognized over the background 

radiation. UV detectors can detect the flames at high speed (3-4 milliseconds) 

based on this technology due to high energy UV radiation emitted by fires. 

However, this discernible UV radiation can interfere with atmospheric materials 

such as smoke, smog and vapors or random UV radiation sources such as arc 

welding, lighting, X-Rays, solar radiation. These can cause the false alarms in 

outdoor applications. Therefore, UV detectors are mostly employed for indoor 

applications. 

2.2.1.2. IR Flame Detection (0.75-1,000 µm wavelength) 

IR (Infrared) sensors can easily recognize the spectral pattern that emitted by 

flame temperature and production of fire hot gases. However, in a fire scenario the 

flames are not only source of IR radiation. Oven, halogen lamp and furnaces also 

emit IR radiation that coincides with flame in IR radiation wavelengths. In order to 

handle this problem various parameter analysis and mathematical techniques are 

employed. The most commons are flickering analysis and narrow band IR 

threshold signals filters between 4.1 and 4.6 µm wavelengths. Most single IR 

detectors are based on pyro electric sensors with 4.4 µm optical filter and a low 

frequency 1-10 Hz electronic band pass filter. These systems are mostly used for 

indoor applications.  

2.2.1.3. UV/IR Flame Detection 

The UV sensor easily activated by alarm stimuli such as arc welding, X-rays and 

solar spikes, although it is a good fire detector by itself. An IR sensing channel, 

working at 2.7 µm or 4.1-4.6µm spectral ranges is added to UV detector to prevent 

false alarms. This system is considered reliable for most mid-range applications. 

However, this technology has its disadvantages and limitations since each type of 

fire has its own characteristic. For example; while a hydrogen flame generates a 

lot of UV radiation with very little IR, a coal fire generates little UV and high 
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amount of IR radiation. Therefore, the dual UV/IR detector must combine signals 

and compare these signals to distinguish the other sources caused false alarms. 

2.2.1.4. IR/IR Flame Detection 

In dual IR flame detection technology, two narrow spectral ranges in the near IR 

spectral band are used to eliminate the false alarms. Hydrocarbon flames emit 

energy of a continuous nature in near IR between 0.9 and 3.0 µm, and peak at the 

4.3-4.5µm caused by a hot CO2 fire product; these features are the heart of the 

most dual IR detectors. Two narrow bands 0.9 and 4.3 µm or combination of short 

wavelength 0.8-1.1µm and long wavelength 14-25µm IR channels are employed at 

common dual IR flame detectors. Some of the IR detectors contain a channel in 

4.7-16µm IR band for background detection. 

2.2.1.5. Triple IR Flame Detection 

Combination of three IR sensors is used in triple IR flame detection system. One 

of these sensors is responsible for the CO2 flame emission spectral band and the 

others are employed for specially selected spectral bands, where black body 

emitters and background radiation are interfering. This system employs some 

algorithms for analyzing radiation intensity, ratios, correlations, threshold values 

and flickering signals that obtained from three sensors. 

2.2.1.6. CCTV Flame Detection 

CCTV (Closed circuit television) flame detection is a system that consists of triple 

IR flame detector and a color video camera. In this system color video camera can 

give option to user to investigate the monitored area, identify the fire’s source 

location and help to select the best response to the situation. 

2.2.1.7. Detection Distance 

Sensitivity and range are related to fire size. The detectable fire size varies 

according to the inverse square law. If detection distance is doubled, % 25 of the 

flame lights can reach the detector. Conversely; system needs four times larger 

area of fire for the same response time. For example, if a standard detector with 

capable of detecting 1 m
2 
fire at 10 m distance is located at 20 m distance from fire 

source; the required minimum fire size will be 4 m
2
. The flame detection distance 

according to the inverse square law (Anonymous, 2009) is shown in Figure 2.4. 



15 

 

 

Figure 2.4. Flame detection distance (Inverse square law) 

2.2.2. Smoke Detectors 

Smoke detectors are known as the most common method of fire inspection and 

detection to save the life all over the world. There are five types of smoke 

detectors. Photo-electric and Ionization are the most common types. The others 

especially used for special applications; (optical) beam, aspirating and video 

smoke detectors (Porteous, 2011). 

These systems are designed to regulate the air flow with a detector and eliminate 

the foreign materials and insects to reduce the false alarm rate and improve the 

detector performance.  

There are some factors that affect the selection of suitable system for application; 

1. Fuel speed of growth 

2. Flame and type of smoke produced 

For example; while ionization smoke detectors are good at detection of fast 

flaming fires associated with invisible smoke, photo-electric smoke detectors 

respond well to slow smoldering fires associated with visible smoke.  

2.2.2.1. Ionization Smoke Detector 

Ionization smoke detector is the earliest approach for smoke detection that first 

developed by Swiss physicist Walter Jaeger in 1930. The working principle of the 

ionization smoke detector can be explained as follow; 

Under normal circumstances the air in chamber is ionized by Americium a 

radioactive element.  This causes a free and equal electron flow between two 

adjacent electrodes. If smoke particles enter the chamber, normal flow of electrons 

is interrupted and this situation causes alarm activation. In Figure 2.5 this 

phenomenon is explained (Anonymous, 2010 c).  
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Figure 2.5. Working principle of ionization smoke detector  

2.2.2.2. Photo-Electric Smoke Detector 

As it can be understood from name a photo electric sensor is an optical detector 

that contains a transmitter and receiver. The transmitter and receiver are mounted 

inside a black chamber with suitable offset distance. In normal circumstances, 

transmitter emits focused light beam. This light is absorbed by wall of the chamber 

and receiver receives no light.  

When visible smoke particles enter inside of chamber, the light emitted by 

transmitter is scattered in all directions. Receiver detects this light and activates 

the alarm. In Figure 2.6 working principle of photo electric sensor is explained 

(Anonymous, 2010 c).  

  

Figure 2.6. Working principle of photo electric smoke detector  

2.2.2.3. Optical Beam Smoke Detector 

Optical beam smoke detector system employs a combination of focused light 

transmitter, light receiver and a retro reflective surface (prism) to return beam to 

the receiver.  
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A beam smoke detector works on the principal of obscuration. If the light beam 

reduced or interrupted by smoke particles system is activated and an alarm state 

occurs. Beam detectors are generally used for long distance applications up to 100 

meters. Though it seems as advantages, beam detector requires a straight and 

uninterrupted direct line of sight. These systems are generally used in hangers, 

warehouses etc. where the multiple smoke detection methods are impractical. 

2.2.2.4. Aspirating Smoke Detector 

The working principle of aspirating smoke detector is the same with photo-electric 

smoke detector. If smoke enters the sensing chamber, smoke particles scatter the 

light then light is detected by sensitive receiver. These systems are generally used 

in applications that very early smoke detection is required. Figure 2.7 shows the 

main components and working principle of aspirating smoke detector. 

Aspirating smoke detection systems consist of four main components (Porteous, 

2011); 

1. A network of pipes with one or more holes to inhale sample smoke 

2. A calibrated aspirator 

3. A particulate filter 

4. A calibrated smoke sensing device 

 

Figure 2.7. Main components of aspirating smoke detection system 
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2.2.3. Heat Detectors 

There are two methods to detect fire from the presence of the heat; 

1. When the ambient temperature increases sufficiently to predetermined 

temperature level, system operates and alarm is activated (Fixed temperature 

heat detector). 

2. When the ambient temperature increases over time equal to or greater than the 

rate of change, detector operates and activates the alarm system (Rate of rise 

heat detector).  

2.2.3.1. Electromechanical Detector 

Electromechanical heat detectors operate due to a combination of mechanical 

movements and creating an electrical circuit. There are four fundamental types of 

electromechanical fixed-temperature heat detector (Porteous, 2011); 

1.  Bi-metal thermostat operates with one end fixed into position and the other 

end free to move depending on the change in its temperature. When the 

ambient temperature increases, bi-metal strip creates an electrical circuit that 

activates the alarm system. Figure 2.8 shows the working principle of bi-metal 

thermostat. 

 

Figure 2.8. Working principle of bi-metal thermostat 

2. The most common type of fixed temperature electromechanical detector is a 

fusible link including a eutectic alloy. Eutectic alloy is the mixture of metals 

whose melting point is lower than the individual metals. When the ambient 

temperature increases alloy’s temperature, alloy changes the state from solid to 

liquid. This change releases a spring held under the pressure and activates the 

alarm system.  

3. The third one contains a long heat sensitive wire lined between two points. 

One point is fixed and the other is draped on a wheel. A weight at the end of 
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the wire, maintains the tension of it. When the ambient temperature increases, 

wire expands and weight drops to a point which creates an electrical circuit 

and activates the alarm. 

4. The fourth type consists of a twisted pair of electrical conductors and the heat 

sensitive insulators that separate these conductors from each other. When 

insulators exposed the heat, they change physical state from hard solid to 

molten that enable conductors to create an electrical circuit and activates the 

alarm.  

2.2.3.2. Optomechanical (Linear) Detector 

An optomechanical detector is advanced and modern variation of the 

electromechanical heat detector. The system contains one or more fiber optic 

cables separated by heat sensitive insulator. A focused light signal is passed 

through the cable. When exposed to the heat, the heat sensitive insulator changes 

state from solid to molten. This change causes the degradation of the light signal. 

The signal changing is monitored by a device and activates the alarm. Figure 2.9 

shows the structure of optomechanical detector (Anonymous, 2008). 

 

Figure 2.9. Structure of optomechanical heat detector  

2.2.3.3. Electropneumatic Detector 

Electropneumatic detector is a rate of heat rise detector containing a vented 

chamber which includes a diaphragm. This diaphragm moves due to pressure 

changes according to rate of change of ambient temperature. If ambient 

temperature changes faster than calibrated, the diaphragm moves sufficiently to 

create an electrical circuit that activates the alarm system. The main advantage of 

this system is that it can operate at a range of temperature as it has capability to 

respond the rate of change in temperature. 
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2.2.3.4. Electronics (Thermistor) Detector 

A thermistor is a type of resistor that its resistance changes substantially according 

to temperature. The resistance of the thermistor is high in low temperature ambient 

with little electric current. When the ambient temperate rises the resistance of 

thermistor decreases and current flow increases. With this feature; the ambient 

temperature can be monitored. These types of detectors can be used as fixed type 

or rate of rise heat detectors depending on design. Figure 2.10 shows the 

distribution of the resistance values of a thermistor according to temperature. 

 

Figure 2.10. Thermistor curve 

2.3. The Evolution of Robotics 

The evolution of the robotics has been dominated by human necessities. First of 

all, industrial revolution put the robots in the factories to protect human operator 

from harmful tasks. The human expectation has raised in time and new robot 

usage areas (cleaning, construction, shipbuilding, firefighting, construction, 

rehabilitation etc.) and features (more flexibility, intelligence etc.) have been 

created to meet the human desires.  

The evolution of the robotics research can be basically categorized as robot 

manipulators, mobile robots and biologically inspired robots (Garcia et al., 2007). 

The term “Robota” is first used in Slavic languages and the original mean is 

monotonous work or slave labor. By the Czech playwright Karel Capek’s play 

R.U.R (Rossum’s Universal Robots) in 1921 the word “Robot” received another 

meaning. In the fiction, robots served their masters but after a while they revolted 

against and killed him “Rossum” and also destroyed all the life. In the fiction 
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robots had superior abilities. R.U.R created negative sense in people mind about 

the robots (Wallen et al., 2008). 

The Russian science fiction writer “Isaac Asimov” formulated the three 

fundamental laws for robots. Zeroth law was added later. The perspective was in 

positive manner about robots. Robots were described as mechanical creature 

(automaton) in human appearance without feelings (Wallen et al., 2008). The laws 

are given below; 

0. A robot may not injure humanity, or, through inaction, allow humanity to 

come to harm. 

1. A robot may not injure a human being, or, through inaction, allow a human 

being to come to harm. 

2. A robot must obey the orders given it by human beings except where such 

orders would conflict with the First Law. 

3. A robot must protect its own existence as long as such protection does not 

conflict with the First or Second Laws. 

“Stig Moberg” from ABB (Asea Brown Boveri) Robotics Company completed the 

first law with two more laws for industrial robot. These are given below (Wallen et 

al., 2008); 

4. A robot must follow the trajectory specified by its master, as long as it does 

not conflict with the first three laws. 

5. A robot must follow the velocity and acceleration specified by its master, as 

long as nothing stands in its way and it does not conflict with the other laws. 

According to the some researchers, the industrial robot history began with Heron 

in the first century BC. He thought about the open the temple doors automatically 

using the energy from altar fire with a device which convert the steam to rotational 

movement. Arabs also contributed robotic history. They were interested in 

manipulate the environment for human comfort. In the 1800s, a Swiss watch 

company built a number of automatons (older word for robot, objects that move 

automatically) like human like dolls (Anonymous, 2006).  

“Nicola Tesla” had an industrial focus and was one of the greatest inventors of the 

industrial revolution. He thought that there was a direct analogy between machines 

and man in their mechanisms, senses and control. According to the Tesla, robots 

are not toys they are complex integrated and useful systems (Rosheim, 1994). He 

made pioneering works in robotics by his robot boat. It could be remotely 

controlled with radio waves. Tesla’s robot boat is shown in Figure 2.11. 
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(a) 

 
(b) 

Figure 2.11. Tesla’s robot boat (a) patent drawing (b) structure 

2.3.1. Robot Manipulators 

A robot manipulator also known as robot arm is a serial chain of rigid limbs. 

Robot manipulators are designed to perform a task with end effector [14]. There 

are different definitions for the robot manipulators. Some of them are given below; 

According to the Robot Institute of America (Sciavicco and Siciliano, 2005); 

1. A robot is a re-programmable multifunctional manipulator that designed to 

move materials, parts, tools or specialized devices through variable 

programmed motions for the performance of variety of tasks. 

 

According to the International Organization for Standardization (Anonymous, 

2012 c);  

2. Manipulating industrial robot is an automatically controlled, re-programmable, 

multi-purpose, manipulative machine with several DoF (degrees of freedom), 

which may be either fixed in place or mobile for use in industrial automation 

applications. 

3. Manipulator is machine, the mechanism of which usually consists of a series 

of segments jointed or sliding relative to one another, for the purpose of 

grasping and/or moving objects usually in several DoF. 

The industrial robotics researches and works are the mixture of some fields of 

studies. In the mechanical engineering science, the machine is studied in static and 

dynamic situations. Mathematic science describes the spatial motions. Sensor and 

interface design tasks are executed by electrical electronics engineers. Computer 

science provides programs to devices to carry out their tasks (Wallen et al., 2008). 

Research topics of the robot manipulator can be basically categorized as (Garcia et 

al., 2007); 
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1. Kinematic calibration 

2. Motion planning 

3. Control law 

First research area kinematic calibration is a necessary process due to the 

inaccuracy of the kinematic models. This process consists of four stages. The first 

stage is mathematical modelling. The second one is the measurement the gap 

between theoretical and real model by sensors and the third one is the 

determination of the robot’s end effector position. Last one is the implementation.  

Second research area is the motion planning in which sub goals are calculated for 

the finishing of the robot’s task. There are two methods in the literature for motion 

planning; implicit and explicit. Implicit method determines the required dynamic 

behavior of the robot. Explicit method defines path between the robot and target. 

Third area is control law that assures the execution of the plan which is required 

for robot’s task. The control techniques range from PD (Proportional Derivative) 

and PID (Proportional Integral Derivative) to adaptive control. Force control is 

another issue in the control law; in the action between manipulator and 

environment, the contact forces of the end effector is regulated. 

In 1990s, new application areas comprised such as food, pharmacy industry. To 

meet the request of the new industrial areas new specifications and research topics 

have been developed. Flexibility and artificial intelligence are the most important 

terms in new research areas. The main aim of the flexibility is to give ability to 

robot for self-adaption to the product and environment. Artificial intelligence 

techniques are used to provide intelligence to the robot for operating in dynamic 

environment and uncertainty. 

One of the first industrial robots, the Unimate shown in Figure 2.12 was 

manufactured in United States by Unimation Company in 1961. It was patented by 

George Devol in 1954. It was also called programmable transfer machine that 

designed for material handling and first installed in one of the production line of 

GM (General Motors) in 1962 (Karl, 2010). In 1969 Victor Scheinman designed 

“Standford Arm” robot shown in Figure 2.13. It was a six-axis arm for tracking 

arbitrary paths in three dimensional spaces. Standford Arm increased the 

applicability of the robots for sophisticated applications such as assembly, 

welding. 
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Figure 2.12. Unimate robot 

 

Figure 2.13. Stanford arm robot 

The Japanese robot industry started in 1967 when Tokyo Machinery Trading 

Company started to import the Versatran robot from AMF (American Machine 

and Foundry) Company. In 1968 Kawasaki Heavy Industries signed a license 

agreement with Unimation and started to produce robot in Japan. Selected 

milestones of industrial robotics evolution are given in Table 2.1. 

Table 2.1. The selected milestones of the industrial robotics  

Year Milestone 

1954 Devol designs a programmable factory robot (patent granted in 1961) 

aimed at universal automation (patent granted in 1961). His company was 

named Unimation. 

1956 Devol’s design prompts Joseph F. Engelberger to champion industrial 

robots and make Unimation Inc. the world’s robot pioneer. 

1959 A prototype Unimate arm from Unimation is installed in a GM factory. 

The first commercial industrial robot is installed in 1961. 

1960 AMF Corp. introduces thefirst industrial robot with a cylindrical 

coordinate frame, the Versatran by Harry Johnson and Veljko Milenkovic. 

1967 Japan imports thefirst industrial robot, a Versatran from AMF. 

1968 Unimation licenses its technology to Kawasaki Heavy Industries Ltd. of 

Japan. This helps to ignite an explosion of robot development in Japan. 

1970 Victor Scheinman at the SRI (Stanford Research Institute) introduces the 

Stanford Arm, an improvement on the Unimate. 

1971 Cincinnati Milacron Inc. markets T3 (The Tomorrow Tool), a computer-

controlled robot designed by Richard Hohn. 
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1973 The Asea Group of Sweden introduces the all-electric IRb 6 and IRb 60 

robots designed for automatic grinding operations. 

1977 ABB introduces microcomputer-controlled robots. 

1978 Unimation and GM develop the PUMA (Programmable Universal 

Machine for Assembly) based on Victor Scheinman’s robot arm design. 

1979 Yamanashi University designs the SCARA (Selective Compliance Arm for 

Robotic Assembly). IBM and Sankyo Robotics jointly market this robot 

1979 The semiconductor industry publishes the first standard for 200 mm wafers 

1980 Japan becomes the world’s largest robot manufacturer. By 1990, Japan’s 

approximately 40 robot makers dominate the global robot market. 

1981 Asada and Kanade build the first direct-drive arm at Carnegie Mellon 

University. 

1984 The industrial robot industry consolidation begins. Most small robot 

companies go out of business within six years. 

1994 The semiconductor industry plans to manufacture devices on 300 mm 

wafers. The first pilot line is targeted for 1997 and early production is 

planned for 1998 using a high level of automation. 

1995 The second robot boom begins, enabled by the computer power now 

available. Robot–human interaction is addressed. 

1997 Substrate-handling robotic systems begin operation at the first 200 mm 

wafer fabrication facility, by SGS-Thomson in Catania, Italy. 

1997 First publication of standards for 300 mm wafer handling. 

1999 SEMICONDUCTOR 300 a joint venture between Infineon Technologies 

and Motorola manufactures the first 64M DRAM on 300 mm silicon 

wafer, in Dresden, Germany. 

2000 TSMC opens its first 300 mm wafer manufacturing line at a chip foundry 

in Taiwan. 

2012 The semiconductor industry’s initial target date to begin manufacturing on 

450 mm wafers is 2012. 
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Some statistical information about industrial robots; operational stocks, usage 

areas and operational stocks on country basis are given in Figures 2.14, 2.15 and 

2.16 respectively (Anonymous, 2012 a).  
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Figure 2.14. Operational stocks of industrial robots 

 

Figure 2.15. Usage areas of industrial robots 
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Figure 2.16. Operational stocks of industrial robots on country basis 

2.3.2. Mobile Robots 

The mobile robot is a system that able to complete tasks in different places. As 

opposed to fix based industrial robot, a mobile robot has its movement unlimited 

by its size due to its mobility. Mobile robots can be used to perform a variety of 

tasks which are normally carried out by humans such as surveillance, exploration, 

patrol, fire searching-fighting, homeland security, care taker, entertainer (Chen et 

al., 2009). 

A mobile robot system consists of a platform moved by locomotive elements. The 

locomotive system depends firstly on the environment in which the robot will 

operate. These environments can be aerial, aquatic or terrestrial. Samples of the 

mobile robots performed in different environments are shown in Figure 2.17. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.17. Mobile robot samples (a) aerial rescue robot (b) underwater robot (c) 

urban robot 

In the aquatic and aerial environments, the locomotive systems are generally 

propellers or screws. The locomotive system in terrestrial environment is 
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complicated. Wheels, tracks and legs are the typical terrestrial locomotive 

elements. 

A mobile robotic system has a set of functional parts similar to human beings. 

These functional parts include intellectual, actuation, mobility, sensory, 

communication and energy (Chen et al., 2009).  A model of these parts is shown in 

Figure 2.18. 

 

Figure 2.18. Model of mobile robot’s functional parts  

1. Intellectual and actuation part; controls the actuation part which drives the 

mobility system with information and decision process. 

2. Energy; a mobile robot exerts energy onto environment. In this process, the 

primarily energy source (generally electrical) is converted to other types of 

energy such as kinetic, mechanical, wave etc. while a mobile robot carries out 

its task. 

3. Mobility; this part consists of statue and motivational parts. Statue refers the 

body frame and mechanical frame of the robot.  Motivational part is employed 

to enlarge or refine the robot mobility to execute the specific tasks.  When a 

mobile robot carries out its task, statue and motivational parts interact with the 

environment. This operating environment can be classified in three categories; 

a) Pre-defined and structured environment, the robot knows the all details of 

(path, objects deal with) the working environment. It typically exists in 

factory automation.  

b) Semi structured environment, the robot has some knowledge about the 

environment (with GPS etc.) but the situation can be changed spatially and 
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temporally. Surveillance robot is a typical example for semi structured 

environment robot.  

c) Unstructured environment, the robot (for example underwater robot) has 

no information about the operating environment. It has to rely on its 

sensory and navigation system.  

4. Sensory; while the mobile robot performs its task, it communicates with the 

environment through data, image or video. To receive the situational 

information, robot uses sensory function. 

5. Communication; in many mobile robot applications communication part is 

essential. It can be employed to monitor the robot, to communicate with other 

robots or communicate with environment.  

A functional block comparison between human beings and mobile robot (Chen et 

al., 2009) is given in Table 2.2. 

Table 2.2. Functional block comparison between mobile robot and human being  

Functional Blocks Human 

Beings 

Robots 

Intellectual Brain Microprocessor 

Statue     Skeleton Mechanical frame (airframe, chassis, 

hull) 

Motivational     Limbs Wheels,  legs,  tracks,  propellers, 

grippers, etc. 

Actuation   Muscles Hydraulic, electric, pneumatic, 

piezoelectric,  electrostatic  actuators 

Sensory (perception) Eyes, ears, 

skin 

Cameras, optic sensors, sonar, sound, 

infra-red  light,  magnetic  fields, 

radiation, etc. 

Communication Speech, 

gesture  

Data, image/video, sound 

Energy Food Power source / energy storage 
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The design process of the mobile robots can be categorized into three different 

parts;  

1. Software design  

2. Hardware design  

3. Mechanical design  

The software design is divided into two parts. Mobile robot use high level 

software to carry out its mission and function autonomously. Low level software 

contains the basic motor functions such as steering and collision avoidance. 

The hardware design is twofold. Electronic parts (digital-analog and power 

electronic components) are employed to convert the software requests into 

actuator control signal and to scale, digitize the sensor signals. Actuators provide 

mobility to robot by converting the signal to the motion. Sensors measure the 

physical quantities from the environment and convert them into signal which is 

used for locomotion and monitoring. 

The mechanical part is divided into mechanisms and body design. Mechanisms are 

used to transform the actuator’s motion. For example; the rotational movement of 

the motors can be changed to the translational one. The body is designed to protect 

the robot from environment and it gives totality to mobile system. 

The earlier mobile robots were mainly AGVs (automated guided vehicles) that 

generally used to transport the tools in predefined path. Today’s mobile robot 

researches deal with autonomous applications. Research topics consist of four 

parts (Garcia et al., 2007); 

1. Perception of the environment 

2. Self-localization 

3. Motion planning  

4. Motion generation 

The term perception can be replaced by the more general term cognition. In 

robotics; cognition refers the creation of the high level information from the 

combination of low level information. High level information can be used as a 

mental map of environment and prediction of the future environment. Patranik 

(2007) introduced a model of cognition that includes seven mental states; sensing 

and acquisition, reasoning, attention, recognition, learning, planning, action and 

coordination. In this model, the cognition is realized in three cycles; acquisition 

cycle, perception cycle and learning-coordination cycle. The purpose of the 

acquisition cycle is memorizing the information from sensors into short-term 
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memory. Then in perception cycle the data is compared with what is known in 

long-term memory for validation. Finally the learning and coordination cycle plans 

the future actions of the mobile robot. 

In structured environments, perception process allows mobile robot to generate 

models and maps which will be used for motion planning and generation. 

However, in the unstructured or dynamic environment the robot has to learn how 

to navigate. Therefore, the main research in mobile robotics is focusing on 

localization and mapping (Garcia et al., 2007). 

Self-localization process allows a mobile robot to know where it is at any moment 

relative to its environment. For this purpose, various types of sensors are 

employed for measurements related with robot’s state and its environment. The 

localization can be local or global. In the global localization process, the mobile 

robot is relative to its location and orientation respect to the Global Coordinate 

System and the initial location isn’t necessary. In the local localization process, 

robot is relative to its location and orientation with respect to initial location. 

Robotic mapping is the action that performed by any autonomous robot to create a 

map of its environment and localize itself in the map. Mapping consists of three 

processes (Valgren, 2007); 

1. Learning the map 

2. Localizing itself in the map 

3. Path-planning 

As localization will be easy if the robot has a map and mapping will be easy if the 

robot knows its localization, robotic mapping is commonly referred as SLAM 

(simultaneous localization and mapping) (Hahnel et al., 2003). 

Although there are several markets for the mobile robots, service and homeland 

security-military robots are the most common types. Service robots can be 

categorized as professional and domestic robots. The first one is designed to serve 

humans or equipment. For example, medical robots can be used as assistant or 

trainer for surgeries. The second type domestic robot includes educational, home 

care, entertainment applications. The usage of remote controlled military robots is 

started in Iraq War to investigate the roadside bombs (Chen et al., 2009). 

Historical evolution of the mobile robot (ground vehicles) started with the Grey 

Walter and his tortoises. He developed his first two robots; Machina Speculatrix 

shown in Figure 2.19 between 1948 and 1949. They were three-wheeled robots 

that had ability to find their way for charging (Arkin, 1998). 
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One of the first mobile robots with the capable of the reason, Shakey shown in 

Figure 2.20 was constructed in 1968 in SRI. It was equipped with a TV camera, 

range finder and bump sensors. Shakey was programed for perception, world-

modelling and acting (Arkin, 1998). 

The Stanford Cart shown in Figure 2.21 originally designed in 1970 as a line 

follower but it was rebuilt by Hans Morevac and equipped with 3-D vision system 

in 1979. In experiment; The Stanford Cart crossed a chair filled room 

autonomously using a TV camera which was taking picture from several angles. 

These pictures were used for obstacle avoidance (Nehmzow, 2003). 

 

Figure 2.19. Grey 

Walter’s turtle 

 

Figure 2.20. Shakey robot 

 

Figure 2.21. Stanford 

Cart 

Genghis Khan mobile robot shown in Figure 2.22 was developed in 1988 by a 

robotic research group in MIT (Massachusetts Institute of Technology). This was 

six legged robot that designed with 12 motors, 12 force sensors and 6 pyro electric 

sensors. Genghis was able to learn how to scramble over boards and other 

obstacles (Brooks and Flynn, 1989). 

The Khepera robot shown in Figure 2.23 was developed by Nicoud in 1994 in 

Switzerland. It was a miniature robot that had circular shape with 55 mm diameter 

and 30 mm height. 8 infra-red proximity sensors were used in the system as 

proximity and obstacle avoidance sensor (Lund and Miglino, 1996). 

Stanley shown in Figure 2.24 was an autonomous car that won the 2005 Darpa 

Grand Challenge. This vehicle equipped with laser range finder, GPS system, 6 

DoF inertial measurement unit and wheel speed measurement unit for pose 

estimation (Thrun et al., 2006). 
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Figure 2.22. Genghis Khan 

robot 

 

Figure 2.23. Khepera 

robot 

 

Figure 2.24. Stanley 

Some statistical information about mobile service robots; sales for professional 

usage between 2011 and 2012, sales forecast for professional usage between 2013 

and 2016 and sales for domestic usage are given in Figures 2.25, 2.26 and 2.27 

respectively (Anonymous, 2012 b). 
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Figure 2.25. Mobile service robots sales for professional usage for 2011-2012  

 

 

Figure 2.26. Mobile service robots sales forecast  for professional usage for 

2013-2016  
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Figure 2.27. Mobile service robots sales for domestic usage  

2.3.3. Biologically Inspired Robots 

Apart from traditional mobile vehicles which equipped with wheels or tracks for 

locomotion, there is another research area, inspired from biology to produce robots 

with adaptive locomotion system. The most common locomotion system for 

biologically inspired robot is leg. The locomotion over a hard or soft surface by 

means of limbs or legs can be defined as walking (Ceccarelli and Carbone, 2005). 

The legs of walking robots are based on two or three DoF manipulators. Walking 

robots have some advantages when compared with the other types of mobile 

robots. These are (Garcia et al., 2007); 

1. Legged robots can cope with irregular terrain better than wheeled mobile 

robots while positioning its main body away from danger. 

2. Walking robots have advantages for obstacle avoidance, stair mobility and 

over ditches. 

3. Legged robots can walk over loose and sandy terrain easily. 

4. Walking robots inflict less environmental damage than robots move on wheels 

or tracks. 

Although walking robots have advantages, legs create a number of challenges in 

their own (stability and walking gait design).  
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Legged robot researches are focused on leg motion and coordination during robot 

navigation. Basically, a walking robot will be stable if it is able to keep its balance. 

The idea of static stability was inspired by insects and assumed the absence of 

inertia in the motion of the robot limbs. However, during the motion of the robot 

limbs some inertial effects and other dynamic components such as friction and 

elasticity were found to arise restricting the robot movement. Thus, researchers 

started to think about dynamic stability. The first dynamic stable system was 

developed by M. Raibert (1986) in the MIT. Until him, most of the researchers 

focused on statically stable multi-legged systems in order to develop dynamically 

stable robots (Santos et al., 2006). Raibert applied his researches into machines 

with two, three, four or any number of legs to solve one leg problem. In the end he 

succeeded. Sketch drawing of Raibert’s dynamically stable system is shown in 

Figure 2.28. 

 

Figure 2.28. The first dynamically stable system 

Another research topic for the walking robot is walking gait that directly related to 

the stability. Leg is a locomotion element that not continuously contact with the 

ground so, it is important to determine the types of gait and the sequences of leg 

movements (Garcia et al., 2007). There are two types of gaits depending on the 

stability criterion; 

1. Statically stable gait (Figure 2.29-a) 

2. Dynamically stable gait (Figure 2.29-b) 
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(a) 

 
(b) 

Figure 2.29. Gait types (a) statically stable gait (b) dynamically stable gait 

Statically stable gaits have the characteristic of simplifying the control of the robot 

with heavy limbs. They can be classified as periodic and aperiodic gaits. Periodic 

gaits consist of predefined sequence of movements that are repeated cyclically. 

Aperiodic gaits are more flexible for uneven terrain. 

Legged systems have to be faster to compete with the wheeled or tracked robots. 

Thus, they need dynamically stable gaits. The dynamically stable gaits have been 

developed so far are limited with the trot, the pace and bound movements. 

The interest to understand the techniques of legged locomotion observed in nature 

and the efforts to replicate them to mobilize have been mentioned in the 

mythology and ancient scripts from Greek, Indian, Egyptian and Chinese 

civilization (Zielinska, 2004). Mu Niu Lu Ma a wooden walking machine was 

built in 3rd century A.D. in China by the Zhu Ge-Liang during the preparation for 

the war. This machine was a walking machine that transferred its legs in a 

sequence when pushed, similar to a cow. It was used as a wheelbarrow for 

transportation of food supplies. Machine was able to cover 10 km distance in a day 

while carrying 200-250 kg loads. Unfortunately, no design details of this machine 

are available. Another significant work on automation was performed in 12
th
 

century A.D. by Badi’al-Zaman Isma’il ibn al-Razzaz al-Jazari. He compiled the 

text “The Science of Ingenious Mechanisms” consisted of various designs and his 

own inventions (Naomi et al., 2014). He also constructed an automatic machine. 

His machine emptied the water from basin and filled again automatically. 

The first ideas about implementing the legged locomotion to vehicles were in 

fifteenth century. Between 1495 and 1497 Leonardo Da Vinci designed and built 

the first articulated anthropomorphic robot in the history of western civilization. 

His armored knight shown in Figure 2.30 was able to sit up, wave it arms and 

move its head (Silva and Machado, 2007). 
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Figure 2.30. Armored knight and its inner working mechanism 

L.A Rygg proposed the first quadruped machine shown in Figure 2.31 named as 

The Mechanical Horse in 1893. This design was patented. In the design stirrups 

were used as pedals. The rider could power the mechanism. The movement from 

pedals was transmitted to legs through gears. However, there is no evidence to 

prove that this machine actually constructed (Naomi et al., 2014). 

The Steam Man shown in Figure 2.32 was a biped machine that was proposed by 

Georges Moore in 1893. It was powered by 0.5 hp boiler and reached the speed 14 

km/h. A swing arm was used for stability and heel spurs were employed for 

traction. A pressure gauge was mounted to its neck (Silva and Machado, 2007). 

Bechtolsheim Baron designed and patented a quadruped machine in 1913 but there 

is no evidence that this machine actually was built (Silva and Machado, 2007). 

 

Figure 2.31. Mechanical horse 

 

Figure 2.32. Steam man 

After Second World War, walking robot research gathered a momentum due to 

new inventions in mechanisms, material science, electronics, control systems and 

computers. Many researchers started to study and develop new modern systematic 

walking machines in 1950s (Garcia et al., 2007). 

Ralph Mosher built a four legged walking truck shown in Figure 2.33 also known 

as General Electric quadruped with a project started in mid 1960s and finished in 
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1968. Each leg of this machine had 3 DoF; one is in knee and two is in the hip. 

Each DoF was actuated through a crank by hydraulic cylinder. Walking machine 

had dimensions; 3.3 m height, 3 m long and 1,400 kg weight.  It was powered with 

a 68 Kw internal combustion engine. General Electric quadruped controlled with 4 

joysticks by well-trained operators. Despite the hardness of the control, this 

invention was so important for the modern walking robots. It was able to surpass 

the obstacles in difficult terrains (Kar, 2003). 

In 1966 McGhee and Frank developed the first fully computer controlled walking 

robot Phony Pony shown in Figure 2.34 (Reeve and Hallamr, 2005). It had two 

DoF in each leg. Joint coordination was performed by the modern digital 

computer. Joints were actuated by electric motors through a worm gear speed 

reduction system. Phony Pony was powered externally through a cable. It was able 

to walk with two different gaits; the first one was quadruped walk and second was 

trot (Naomi et al., 2014). 

 

Figure 2.33. General Electric quadruped 

 

Figure 2.34. Phony Pony 

In 1969, Bucyrus-Erie Company developed Big Muskie shown in Figure 2.35. It 

was designed for use in open-air coal mine. It is the biggest off-road walking 

machine has been built so far and weighing about 15,000 tons. Big Muskie had 

four hydraulically actuated legs that raised the body and moved forward-backward 

one stride and then lowered the body on the ground. When the body remained on 

the ground, legs lifted and moved the machine to next position. This motion was 

cycled by electronic sequencer (Silva and Machado, 2007). 

The OSU Hexapod shown in Figure 2.36 was built in 1977 as an experimental 

vehicle for locomotion, man-machine interaction and terrain adaptability studies in 

Ohio State University by McGhee and his working team. Each leg had three joints 

which were driven by individual motors. Every joint was equipped with one 

potentiometer and one tachometer to feedback joint angle and joint rate 

information. OSU Hexapod was also equipped with force sensors, gyroscope, 

proximity sensors and a camera system. A PDP-11/70 computer was used to 

provide the computational power to robot for real time control (Ozguner and Tsai, 

1985). 
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Figure 2.35. The Big Muskie 

 

Figure 2.36. OSU Hexapod 

Hirose and Umetani developed a four legged walking robot PV-II shown in Figure 

2.37-(a) in Tokyo Institute of Technology in 1980. It weight was only 10 kg and 

could walk at very low speed only 0.02 meter per second. PV-II was powered only 

10 W power supply due to its weight, sophisticated leg design and low speed 

average. The leg actuation was carried out by DC motors and power screw speed 

reduction system. Its control system enabled it to maintain a horizontal body 

orientation.  

PV-II was equipped with contact sensors on each foot to detect obstacles on the 

path (Naomi et al., 2014). PV-II succeeded for the first time in the world climbing 

the stairs based on the sensor based motion control system using the tactile and 

attitude sensors. Further, the TITAN-III shown in Figure 2.37-(b) was developed 

as the larger version of the PV-II in 1984 by Aruku Norimono in Tokyo Institute 

of Technology. It was equipped with intelligent program to generate adaptive 

walking in terrain. Its leg length was 1.2 m. Weight was 80 kg and it was built 

using composite material (Hirose and Kato, 2000). The latest Titan series robot 

was TITAN-XI shown in Figure 2.37-(c) built in 2008. It was 7,000 kg hydraulic 

quadruped robot that developed for drilling holes to reinforce steep slopes with 

rock. 

 
(a) 

 
(b) 

 
(c) 

Figure 2.37. Tokyo Institute of Technology robot series (a) PV-II (b) TITAN-III 

(c) TITAN-XI  

The main challenges for the development of autonomous walking robot can be 

summarized as (Naomi et al., 2014); 

1. Non-availability of energy efficient actuators; although there are some 

actuators with high performance (high torque and speed), weight to torque 
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ratio and volume to torque ratio are still problems to build energy efficient 

robots. 

2. Reliable and economical sensors, 

3. Lightweight but mechanically strong materials for construction and 

mechanism, 

4. Computers with fast and high computing power, 

5. Lightweight and onboard power source for long duration energy. 

Actual autonomous humanoid (biped) robot first appeared in 1967 by 

Vukobratovic et al. dermato-skeletons experiment (Garcia et al., 2007). In 1973 

the first controller based full scale anthropomorphic robot WABOT-1 shown in 

Figure 2.38-(a) was constructed in Waseda University by Kato et al. It was able to 

communicate with a human in Japanese and measure the distance and direction of 

the objects using external receptors. WABOT-1 could grip and carry the objects 

using the hands which were equipped with tactile sensors (Lim and Takanishi, 

2006). 

Kato et al. also developed WABOT-2 shown in Figure 2.38-(b). It could play an 

electronic organ and read the music. It was equipped with a hierarchical system of 

80 microprocessors and wire-driven arms. Its legs had 50 DoF (Behnke, 2008).  

 
(a) 

 
(b) 

Figure 2.38. Waseda robot series (a) WABOT-1 (b) WABOT-2 

In 1986 Honda began ASIMO Robot Project. After ten years in 1996 Honda 

introduced first product P2 robot shown in Figure 2.39-(a). It was the first self-

contained full body humanoid robot. P2 was able to not only walk on the flat floor 

but also climb the stairs. P2 robot was followed by P3 shown in Figure 2.39-(b) in 

1997. At the end of 2002 ASIMO robot shown in Figure 2.39-(c) was developed. 

It had 34 DoF, 54 kg weights and 130 cm total height. ASIMO was able to walk 

and run in straight or circular paths, go up or down the stairs and perform the 

vision routines such as object tracking, identification, recognition, localization and 

obstacle avoidance (Behnke, 2008; Duran and Thill, 2012). 
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(a) 

 
(b) 

 
(c) 

Figure 2.39. Honda robot series (a) P2 (b) P3 (c) Asimo 

Another important milestone of the humanoid robot evolution Sony Dream Robot 

was introduced in 2000 called as Qrio by Sony Company. It was a fully dynamic 

humanoid robot that was able to carry out human like tasks such as dancing and 

walking. It also recognized the faces, expressed emotion through speech and body 

language (Gebbert, 2014). 

The humanoid robot research topics can be summarized as below (Garcia et al., 

2007; Behnke, 2008); 

1. Bipedal locomotion 

2. Emotion expression and perception 

3. Safe human-robot interaction 

4. Dexterous manipulation 

5. Learning and adaptive behavior 

There are two main approaches for bipedal locomotion. The first one is based on 

the ZMP (Zero Moment Point) theory introduced by Vukobratovic. According to 

this theory, ZMP is a point on the ground that the sum of the moments of all active 

forces equal to zero. If the ZMP is within the support polygon of all contact points 

between the feet and ground, the humanoid robot will be dynamically stable 

(Vukobratovic and Borovac, 2004). Honda Asimo and Sony Qrio are the 

prominent robots that rely on ZMP based control (Behnke, 2008). The 2006 

version of the Asimo with ZMP based control was able to run with 6 km/h speed. 

However; its gait didn’t look human being and Asimo couldn’t store the energy in 

elastic elements. Furthermore, it could only climb the certain stairs. 

The second approach is to utilize the robot dynamics. The possibility of the 

walking down a slope without actuators and control was showed by McGeer in 

1990. McGeer studied two elementary passive walking models from a wagon 
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wheel. Rimless is on a slope and synthetic model is on level ground. These models 

are shown in Figure 2.40 (Narukawa et al., 2010). 

 

Figure 2.40. Two passive walking models of McGeer 

In the first model McGeer showed that the rimless wheel has a periodic motion for 

a given slope angle whose stable region is very large. If the initial rolling speed 

and slope angle are sufficient, the rimless wheel will never falls forward. This 

feature is used to strengthen the stability of passive walkers. At the synthetic 

model, a pin joint and a large point mass were put at the hub. If the leg mass is 

assumed to be negligible when it compared with hub mass, the swing leg motion 

will not disturb the stance leg motion. The stance leg rolls at a constant speed on 

the floor because it is the part of the wheel. Following these analysis, McGeer 

increased the complexity of the biped model and developed several physical 

walkers with or without knees (Hobbelen and Wisse, 2007). One of them is shown 

in Figure 2.41.   

 

Figure 2.41. McGeer’s straight passive dynamic walker 

These studies have been used for useful actuated bipedal and passive dynamic 

walking and then actuated machines have been built. 

Humanoid robot has to perceive its own and environmental states to act 

successfully. For proprioception, robots measure the state of their joints using 
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encoders, force sensors or potentiometers. Robot attitude estimation is important 

for balance. This job is done through accelerometers and gyroscopes (Behnke, 

2008). Many humanoid robots have ability to measure the ground forces at the 

hands and fingers and some of them are equipped with force sensitive skin. CB
2 

is 

one of them. CB
2
 shown in Figure 2.42 is a child-like robot that developed by 

Takashi et al. in Osaka University. It is a humanoid robot and has similar size with 

a child boy. It is about 130 cm high and 33 kg weights (Minato et al., 2007). The 

whole body of this robot is covered with soft silicon skin and many tactile sensors.  

Although some humanoid robots are equipped with superior human senses such as 

laser range finder, ultrasonic distance sensors the most important methods for the 

perception are vision and audition (Behnke, 2008). Generally, movable or fixed 

stereo cameras and onboard computers are used for visual perception. However, a 

real-world image sequence is not a solved problem. These systems work well only 

in simplified environment. On board microphones are used for sound perception. 

The major problem is the separation of the interested sound source from other 

sound sources and noise. Because of described difficulties in perception, tele 

operation systems have been developed. In these systems, signals are captured by 

the robot and interpreted by human. Geminoid robot shown in Figure 2.43 

developed by Ishiguro et al. is an example for tele operation systems. This 

humanoid appears and behaves highly similar to a person. It is not only controlled 

by an autonomous program but also manually. By introducing the manual control, 

the limitations in perception can be avoided and long term intelligent human-robot 

interactions are enabled (Nishio et al., 2007).  

 

Figure 2.42. CB
2 
robot 

 

Figure 2.43. Geminoid robot  

The general idea of the human-machine interaction is evolved from our culture 

human-human interaction. This interaction contains modalities such as speech, eye 

gaze, gestures, body language etc. In order to carry out these modalities humanoid 

robots with interaction abilities are equipped with expressive animated heads 

(Behnke, 2008). Kismet sociable robot shown in Figure 2.44-(a) developed in MIT 

is the one of the example. Kismet is the world’s first robot that truly sociable. 

People can make eye contact with Kismet, read its mood from speech, and 

communicate with gestures (Richardson, 2008). 
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Robots with anthropomorphic arms and hands can be used to generate gestures. 

The generated gestures of humanoid robots contain symbolic gestures such as 

greeting, waving and pointing. The robot head can be also used for pointing and 

shaking (Behnke, 2008). Hubo robot shown in Figure 2.44-(b) developed in 

KAIST (Korea Institute of Science and Technology) equipped with articulated 

fingers is the one of the examples that robots can use sign language. Its height 125 

cm and weight is 55kg. It can imitate the human motions such as walking, hand 

shaking and bowing. Hubo can move its fingers and eyeballs independently. It has 

2 DoF for each eye (camera pan and tilt), 7 DoF for each hand and 1DoF for each 

finger (Park et al., 2005). 

The most extreme form of communication humanoid robot android shown in 

Figure 2.44-(c) is a humanoid android that developed in Osaka. It looks like a 

Japanese woman and its skin is covered with a kind of silicone. Repliee Q2 has 

humanlike feel and neutral temperature. Forty two sensitive tactile sensors are 

mounted under the android’s skin. It is driven by air actuators which supply 42 

DoFs. Repliee Q2 can generate a wide range of motions and gestures (Matsui et 

al., 2005). 

 
(a) 

 
(b) 

 
(c) 

Figure 2.44. Humanoid robots (a) Kismet (b) Hubo (c) Repliee Q2 

Dexterous manipulation is the one of the important capability of human beings. A 

human hand has about thirty DoF that it is too hard to reproduce its flexibility and 

sensitivity. Dexterous manipulation not only requires capable hands but also hand-

arm coordination and coordination of two hands (Behnke, 2008). Shadow hand 

developed by Shadow Robotic Company is the one of the advanced among the 

robotic hands. It’s driven by 40 air muscles and equipped with position and force 

sensors, sensitive tactile sensors on fingertips (Anonymous, 2013 d). 

Humanoid robot has to have ability to learn new skills quickly to adapt daily life. 

In contrast to statistical learning approaches, new methods help robots to learn 

new skills and tasks quickly with interactive training techniques and 

demonstrations such as imitation-based learning and tutelage (Breazeal et al., 

2006). 
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The time evolution of the robotics research from 1960s to 2005 (Garcia et al., 

2007) is shown in Figure 2.45. 

 

Figure 2.45. Time evolution of the robotics  
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2.4. Related Works (Firefighting Robots) 

LUF 60 (Anonymous, 2011 a) is manufactured in Austria that powered with a 

diesel engine. This machine has air blower and water beam fog to clear hazardous 

obstacles and extinguish the fire. LUF60 is designed to use in rail tunnels, aircraft 

hangers, parking garages, chemical plants. The monitor nozzle is able to reach a 

flow rate up to 3,000 liters per minute and distance to 80 meters. It has rubber 

track system to strengthen mobility in high temperature condition that can operate 

to 230 ˚C. The robot can climb the stair, operates on slopes maximum 20 degrees. 

LUF60 firefighting robot is shown in Figure 2.46. 

 

Figure 2.46. LUF60 firefighting robot  

FIREROB (Tan et al., 2013) is a firefighting robot that can be controlled with 

remote controller and used to search in fire scene. This machine has heat shield to 

protect body from high temperature. It is equipped with high pressure water mist 

extinguisher to control the fires. It has thermal camera and sensors to observe and 

to monitor the fire place. FIREROB is shown in Figure 2.47. 

 

Figure 2.47. FIREROB firefighting service robot  

FFR-1 firefighting robot (Tan et al., 2013) is manufactured in United States to help 

the firefighters to carry out their missions. It is controlled with a remote controller. 

Robot is designed to use under hazardous conditions such as high temperature, 

poisonous materials and inside unsafe buildings. FFR-1 is suitable to operate in 

confined spaces, narrow streets, industrial buildings, stores, tunnels, airports, 

military installations, power plants and chemical plants. It has an internal double 

walled cooling system against overheating caused by high external temperature. 

This machine is able to climb up to 30 degree incline. FFR-1 is shown in Figure 

2.48. 
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Figure 2.48. FFR-1 firefighting robot  

Firemote 4800 (Anonymous, 2013 a) is manufactured in United Kingdom. This 

machine is an electrically powered UGV that equipped with 4,800 liter/min 

capacity firefighting nozzle, high pressure water system, color navigation cameras, 

thermal imaging camera, four gas monitors, local cooling system and roll flat hose 

inlet. This vehicle has an insulated stainless steel body which carries all of the 

equipment and reflects the radiant heat to protect the body from high temperature. 

Robot has also circulating water and fixed nozzle system to protect sensitive parts 

and cool down the body. Firemote is controlled with a panel by the help of camera 

system which provides environmental information. It is designed to especially 

operate in potential collapse areas such as workshops, factories, power plants, 

refineries, aircrafts, tunnels and roads. Firemote 4800 is shown in Figure 2.49. 

 

Figure 2.49. Firemote firefighting robot  

MVF-5 (Anonymous, 2013 c) is a multifunctional firefighting robot that 

manufactured by Croatian company DOK-ING to control the fires in unreachable 

areas and life threatening conditions. It is a remote controlled machine that 

operated with GPS-INS (Global Position and Inertial Navigation) System. MVF-5 

extinguishes the fires with high-pressure cannon on hydraulic arm which pumps 

the water up to 55 meters away without intervention of firefighters. This machine 

has a high temperature resistant shield and fireproof coating to protect the system 

from external high temperature conditions and big flames. MVF-5 is able to 

withstand 700 ˚C for 15 minutes or 400 ˚C for 30 minutes. It has capability to 

carry 2,200 liters water and 500 liters foam tanks. Usage areas of MVF- 5 are oil 
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refineries and terminals, military storages, chemical plants and nuclear power 

plants. MVF-5 is shown in Figure 2.50. 

 

Figure 2.50. MVF-5 firefighting robot  

JMX-LT50 (Tan et al., 2013) is a Chinese Robot that equipped with long distance 

remote control system, spray water system and barrier ability. This machine is 

made up of remote controller, chassis, liquid-control fire monitor and control 

system. It is able to protect itself from high temperature by automatic mist 

spraying system. JMX-LT50 uses wheel tire moving structure for traction to 

overcome different kind of obstacles in various conditions. JMX-LT50 is shown in 

Figure 2.51. 

 

Figure 2.51. JMX-LT50 firefighting robot  

SACI 2.0 (Anonymous, 2012 d) is first introduced in Brazil in 2006. This machine 

can be controlled wirelessly. It has 8,400 liters per minute water-foam mix 

pumping capability as solid or fog up to 60 meters. It has also two foam generators 

with 25 liters capability. Robot can pump fluids for three hours without recharging 

and operate full load capacity up to six hours. The other features of this machine; 

own lighting system, modular construction, mounted battery charging system, 

turbo system for increasing the pulling power at critical points, obstacle 

overcoming system and mobile water cannon. SACI 2.0 is shown in Figure 2.52. 
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Figure 2.52. SACI 2.0 firefighting robot  

ArchiBot-M (Anonymous, 2013 f) is Korean firefighting robot that designed to 

use in human inaccessible location. The main purpose of machine is checking and 

clearing the paths for fire fighters. The robot is equipped with special suspension 

system for stair climbing and working in high temperature. It has also waterproof 

ability and cooling system. ArchiBot-M is shown in Figure 2.53. 

 

 

 

Figure 2.53. ArchiBot-M firefighting robot  

Thermite T2 (Anonymous, 2013 b)  is manufactured in United States to be 

operated in hazardous material fires, forest fires, chemical plant fires, rail fires. 

Robot is controlled remotely up to the 400 m distance. Thermite is designed to 

operate in rough terrain. The other features of this machine are; high temperature 

durability, A440f steel and 5th grade aluminum construction, 5 seconds startup 

time for robotic functions and 2,200 liters per minute water pumping capacity. 

Thermite T2 is shown in Figure 2.54. 
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Figure 2.54. Thermite T2 firefighting robot  

MyBOT 2000 (Tan et al., 2013) is Malaysian remotely controlled firefighting 

robot. It is made up of a mobile and rigid chassis. This machine is wirelessly 

controlled. Nozzle system of this robot can be directed at different angle and can 

be elevated in order to control the fire at different height. Robot uses electric 

energy for power. It is equipped with state of art sensor and imaging system to 

detect and locate fire victim. MyBOT 2000 is shown in Figure 2.55. 

 

 

Figure 2.55. MyBOT 2000 firefighting robot  

Luo and Su (2007) developed an intelligent security system for buildings which 

contains autonomous navigation, master slave operated system, supervision 

through internet, a remotely operated camera vision system, danger detection and 

diagnosis system. This system is able to receive the building environmental status 

(fire, smoke, intruder and gas) and send information to user using internet and 

GSM (Global System for Mobile). The intelligent security system contains an ISR 

(intelligent security robot), remote supervisory computer, security module and 

appliance control module. The robot has cylindrical shape with 50 cm diameter 

and 140 cm height dimensions, produced using aluminum frame. ISR made up of 

upper and lower bodies. Upper side carries an IPC (industrial computer) with the 

features; Pentium-III 933CPU (Central Processor Unit) and 256 MB RAM 

(Random Access Memory), touch screen, charge coupled device (CCD) camera, 

sensors and sensory circuit. Lower body carries the drive system, batteries and two 

DC servo motors. ISR is shown in Figure 2.56. 
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Figure 2.56. Intelligent security robot 

The ISR can receive environmental status (dangers such as fire, gas etc.) from 

security module and transmit to appliance module through wireless RF interface. 

Robot can interact with GSM module using RS232 interface and communicate 

with remote supervisory computer through internet. 

 

The multiple sensors and fuse sensory data are used in system to detect the fire and 

generate reliable fire detection signal. Ionization smoke sensor, UV flame sensor 

(R2868) and temperature sensor (AD590) are employed for fire detection. 

 

Fire detection tests of the ISR are shown in Figure 2.57. 

 

 
(a) 

 
(b) 

Figure 2.57. Fire detection tests of the ISR (a) flame detection status (b) gas leak 

detection status 

Khoon et al. (2012) developed an AFFMP (autonomous firefighting mobile 

platform) that patrols and monitors the prescribed area for searching the fire 

occurrence with flame sensors and extinguish it. Robot consists of microcontroller 

system, fire detection unit, navigation and line tracking module and fire 

extinguishment unit. The AFFMP robot is shown in Figure 2.58. 
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Figure 2.58. Khoon’s autonomous firefighting robot  

The flame detection is built around flame sensors which have capabilities to detect 

flames from 760nm to 1100nm wavelength. The front flame sensing system is 

designed to keep AFFMP 10 cm distance away from fire source. ADC (analogue 

to digital converter) receives the output of flame sensors and then, transmits them 

to input ADC pin of microcontroller. When flame sensor value is greater than the 

predefined threshold value, system decides that there is fire source in front of 

AFFMP.  

A dynamic method is used to set minimum threshold value for different 

environments; 

 

1. The AFFMP captures the light intensity of any environment for 10 times 

without any fire source, 

2. The maximum and minimum data are eliminated (Median Average Filtering 

Method), 

3. The remaining 8 values are used to calculate the average value, 

4. An offset value is added to average (delta T=4) so that the random interference 

is taken into account. 

Four pairs of LED (light emitting diodes) and LDR (light dependent resistor) are 

used for line tracking. These sensors are installed on the front part of AFFMP 

body chassis symmetrically namely as left sensor, middle left sensor, middle right 

sensor and right sensor. By default LDR sensors will yield logic ‘1’ since white 

background reflects back all the emitted light, sensors outputs will be logic ‘0’ 

when black line is detected. The principle of line tracking is given in Table 2.3. 
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Table 2.3. Line tracking methodology 

 

Case Left 

sensor 

Middle 

left sensor 

Middle 

right sensor 

Right 

sensor 

Necessary movements 

1 1 0 0 1 Forward 

2 1 1 0 0 1 unit right 

3 1 1 1 0 2 units right 

4 1 1 1 1 3 units right 

5 0 0 1 1 1 unit left 

6 0 1 1 1 2 units left 

7 1 1 1 1 3 units left 

 

A DC fan is used for fire extinguishment which can blow off the candle flame.  An 

ultrasonic sensor is also employed for avoiding obstacles. Experimental test results 

of the Khoon’s robot are given in Table 2.4. 

Table 2.4. Test results of Khoon’s robot 

Types of 

Sensors 

Detection Range 

Flame 

Sensor 

 

Rated specification : 20cm (4.8V)-100cm (1V)  

Through experiments: In front of candle source at about 15cm, 3.6V to 

4.1V. 

Outputs of 

LDR 

Sensors 

 

At a height of about 1.2cm between LDR sensors and the surface, when 

the line track is not detected, the voltage levels are; 

Right : 3.41V 

Middle Right : 3.39 V 

Middle Left : 3.37V 

Left : 3.36V 

When black line track is detected, the voltage level will be ZERO. 

 

Chang et al. (2006) developed a FSR (fire searching robot) using task oriented 

design (TOD) methodology. This system is designed to operate especially for 

indoor fires in the areas less than 165 m
2
. TOD is a schematic robot design method 

that based on the results of the analysis of the tasks. The main goals of the FSR 

are;  
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1. To become aware of location of the victims, fire points and to send these 

information to the firefighters,  

2. Stable mobility in a hazardous and uncertain environment, 

3. Operator safety and convenience in operation. 

The mobile element of FSR has three DoF, two DoF are used in right-left track 

operation and third one is for auxiliary track arm. FSR can climb the stairs using 

the left-right tracks. Chang’s fire searching robot is shown in Figure 2.59. 

 

 

Figure 2.59. Chang’s fire searching robot 

Robot has three special features. These are; 

 

1. The system is operated by wireless remote control so that the safety of the 

operator is guaranteed. 

2. The operator can watch the image acquired by the attached IR camera. With 

this function firefighter can easily determine the victim and fire position. 

3. With the mobile elements robot can climb the stairs and work in narrow 

spaces. 

The hardware of the robot controller system consist of Intel 1.4 GHz embedded pc 

(personal computer), DAQ (data acquisition board) (Sensoray S626), a bluetooth 

module and 900 MHz RF (radio frequency) module. The technical specifications 

of FSR are given in Table 2.5.  
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Table 2.5. Technical specification of Chang’s fire searching robot 

Items Specification 

Total Size 900 x 650 x 370 mm 

Weight 100 kg 

Payload 70 kg 

Maximum velocity 0.5 km/h 

Gradability 30° 

Operating time  1 hour 

Traction motor type DC Motor 

Maximum range of wireless remote 

control 

200m 

 

Kim et al. (2009) developed a portable fire evacuation guide robot system that can 

monitor indoor disasters. It can be used for victim detection and atmosphere 

observation. System contains voice communication module and LED guidance 

lamps for victim rescuing operation. Several robots can communicate in this 

system for searching in large areas with WPAN technology (wireless personal area 

network). System is designed to operate in proposed fire scenario which shown in 

Figure 2.60. 
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Figure 2.60. Kim’s fire and operating scenario 

After firefighters carry the robot system in the time taken about 30 seconds, they 

deploy their robot by throwing into the fire site. The system starts to gather 

internal information such as temperature, CO, O2 gases. All gathered information 

about site situation, video and voice data is transmitted to firefighter operator 

using wireless channel. When firefighters detect the victims, they can 

communicate with them using microphone and speaker system.  

The robot has spool-like round shape with 120 mm x 120 mm x 120 mm 

dimensions and 2 kg weights which makes it easy to carry. The main body of the 

evacuation robot consists of two DC motors, a RC (radio controlled) servomotor, a 

camera, sensors (temperature, CO, O2, gas, compass), a speaker, a microphone, 

LED-set lamp and RF module. It has also an embedded operating system. Design 

and hardware specifications of the portable fire evacuation guide robot are given 

in Table 2.6. 
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Table 2.6. Hardware specification of the Kim’s robot  

 

Category  Specification  

Voltage range   6–9 V 

Electric current (operation mode)   200 mA  

Electric current (standby mode)   50 mA  

Battery type LiPo  

Maximum movement speed   282 mm/sec  

Weight 2 kg 

 

The external body of the robot is manufactured with aluminum compound metal. 

Internal circuit is produced using teflon wiring that enables the system to survive 

up to almost 250 ˚C. The electronic circuits of the robot are inserted into the body 

and whole outer case is covered with waterproof epoxy adhesive. For the impact 

resistance; leaf springs are inserted into the gears and robot’s wheel. Outer impact 

from the vertical direction is decreased by leaf springs with internal coil. The side 

bolster also distributes the diagonal external impact over the whole body. System 

can distribute and resist the external impact. Impact resistance mechanisms are 

shown in Figure 2.61. 

 
(a) 

 
(b) 

Figure 2.61. Impact resistance mechanisms of Kim’s robot (a) leaf spring (b) side 

bolster 
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The impact resistance and waterproof features of the system are tested in 9m x 3m 

x 2.3m room. The impact resistance is tested throwing the robot to the earth with 

increasing falling heights until external cracks are observed. The maximum 

undamaged height is 3.5m for throwing. Waterproof (cooler) feature of the robot is 

tested operating the system under falling water situation. High temperature 

protection of the robot is tested both in electronic oven and real fire condition. It is 

observed that; the robot is suitable for monitoring the sites and rescuing victim in 

early stages of fire before the ambient temperature reaches flashover.  

Xu et al. (2011) developed a mobile robot remote fire alarm system. The system 

consists of the mobile robot and remote terminal. While mobile robot acquiring 

and sending the information about fire scenario, remote terminal receives this 

information and alarm. The main functions of the mobile robot and remote 

terminal are given below; 

Mobile robot functions: 

1. It not only detects the fire on both sides of the fixed route, but also detects the 

fire in the area without fixed route. 

2. It can detect the smoke. 

3. It can sense the environment temperature. 

4. Robot stops and alarms when there is an obstacle closer than 50 cm in front of 

it. (Obstacle avoidance). 

5. Robot is able to record the distance traveled. 

6. It can transmit the information wirelessly in real time.  
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Remote terminal functions: 

 

1. It can receive the data sent from mobile robot in real time and alarm. 

2. It displays the fire information and save them in real time. 

Mobile robot is made up of STC89C52 MCU (microcontroller unit) as control 

center, far IR flame sensor, E18-D80NK IR obstacle avoidance sensor, smoke 

sensor, DS18b20 temperature sensor, photoelectric sensor and SRWF-1021 

wireless transmission module. Remote terminal uses STC89C52 microcontroller 

as control center, LCD12864 (liquid crystal display), clock module and wireless 

transmission module.  

The drive mode of the mobile robot is differential drive. Four units of LED and IR 

reception diodes are used for line (fixed route) tracking. Three units of far IR 

sensors are used for flame detection. They are arranged as left, right and center 

sensors. Robot uses the right and left units to drive forward to fire, center sensor to 

determine the distance from fire. When the distance reaches about 10 cm the robot 

stops, sends information to the remote terminal and alarms. The fire detection 

range can be up to 2.3 meters.  

Dual power supply is used in the system. First one is A-a rechargeable nickel 

cadmium 14.4 V/1500mAh battery that supplies LM7805 (voltage regulator) 

which offers 5V output voltage for sensors and controller. Second one is B-a 

rechargeable nickel-cadmium 7.2V/ 2000mAh battery that supplies power for 

motors. 

Zhang et al. (2012) developed an intelligent inspection robot using combined 

flame sensors and IR sensors. The system combines the flame and IR sensors to 

avoid obstacles while searching for high temperature flames. Hardware of the 

robots is divided into three modules; sensing and communication, motion and 

power. 

Sensing and communication module consists of PSD (position sensitive detector), 

LPC2368 model process chip, two CAN (controller area network) communication 

interface, an extra AD port, three expanded I/O (input-output) interface and one 

expanded 5V power supply. In this module; the analogue signals from IR sensors 

are received and transformed into digital signal so that the distance between the 

object and robot is calculated. PSD sensors have ability to measure the distance in 

the range of 10-80 cm with the ± 30% accuracy error. Arduino sensors are used in 

the system as flame detector. Flame detection is carried out in the range of 

760nm–1100 nm wavelength, working temperature is between -25 °C and 85 °C 

and probe angle is 60°. Lithium batteries are used as power supplier. L298 N 

motor driver and two DC motors are used to establish the motion module.  
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Roberto et al. (2013) proposed a multisensor data fusion technique for fire 

detection through a mobile robot.  Detection system is based on temperature, 

luminosity measurements and flame detection.  

The robot has 19x11 cm dimensions and operates based on tread mill which is 

suitable for inhospitable environment. Tamiya DC engine, Ardumoto driver and 

3.7V battery are used in the motion system. Robot is controlled by Arduino 2009 

board. System is shown in Figure 2.62. 

 

Figure 2.62. Roberto’s fire detection robot 

The data fusion algorithm of the system is operated based on moving average filter 

method. The moving average point is calculated using the average values of the 

temperature, luminosity and flame sensors collected in a time interval. Fire 

detection tests are executed for alcohol and paper flames. Temperature and 

luminosity detection, flame sensor behavior in different distances from fire and the 

best moving average parameters are tested. 

Moving average parameters are tested at 30 cm distance from the flame for 60 

seconds time interval. 10, 20, 30 seconds time periods of the moving average 

values are evaluated. Test result for 10 seconds time period is shown in Figure 

2.63. 

 

Figure 2.63. Moving average test result for 10 seconds time period 

To determine the ideal flame sensor position, the distance tests between the robot 

and flame are carried out. As the result; it is determined that the maximum sensing 
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distance is 1 m and minimum distance is 10 cm. 1 m distance is determined as the 

best choice for flame detection because of the safety reasons.  Distance test results 

are shown in Figure 2.64. 

 
(a) 

 
(b) 

Figure 2.64. Roberto’s system fire detection distance test results (a) 10 cm from 

the flame (b) 1 m from the flame 

Threshold of the temperature and luminosity are tested. A normal luminosity value 

of a room without fire is supposed 700 and 830 lux. Normal room temperature is 

between 20 ˚C and 35 ˚C. Therefore, threshold values are indicated as 900 lux for 

luminosity and 40 ˚C for temperature sensors. Temperature and luminosity tests 

results are shown in Figure 2.65. 

 
(a) 

 
(b) 

Figure 2.65. Roberto’s system (a) temperature sensor test result (b) luminosity 

sensor test result 

Kumar et al. (2007) developed a gesture controlled robot with the capabilities of 

fire extinguishment, audio and video capturing. Robot is made up of fire 

extinguisher set and spy camera. 

The system consists of Atmega 8 microcontroller, flex sensors, RF module, DC 

motors, relays, TV tuner card, video camera and water sprayer. Flex sensors are 

used to understand the finger movement. When flex sensor is bent with finger 
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behavior the resistance value of the sensor is changed. Therefore, the motion of the 

robot can be controlled. TV tuner card is used by computer to receive information 

from camera. 

Tongying et al. (2010) developed a flame detection system based on a mobile 

robot platform. In the system, environmental images are obtained with a camera 

which placed on mobile robot. An image edge detection method is proposed to 

suppress the noise interference and detect the flame image accurately. The system 

includes an exploration-rescue mobile robot which is suitable for especially coal 

mines. Robot consists of vision system installed on the arm, flameproof electrical 

engine, power supply and sensors. The hardware system of the robot contains; 

robot actuator, robot controller computer, sensory system, A/D collection card and 

human machine interface. The exploration-rescue robot is shown in Figure 2.66. 

 

Figure 2.66. Guo’s exploration-rescue robot 

Martinson et al. (2012) developed a robot (Octavia) which can be used as a team 

member for firefighting tasks. In the system, when human team leader indicates 

the location of the fire using speech-gesture and clears the obstacles, robot finds 

the exact location of the fire with its sensors and extinguishes the fire with CAF 

(compressed air foam) system.  

Octavia has 48 DoF in body, arms and head. It is mounted on a two wheeled 

Segway base for mobility. Robot uses the perceptual system to understand what 

team leader means and behaves correctly. Perceptual system contains; two color 

cameras in eyes, Mega-Imaging SR-4000 flight camera in head, IR camera 

centered on the chest. A Hokuyo laser range finder is employed for the navigation. 

Octavia Robot is shown in Figure 2.67. 
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Figure 2.67. Octavia robot 

SR-4000 camera and clustering approach are used to detect and track people in the 

environment. In the person tracking system; when the intensity image from 

extracted region contains a face, this region is added to the list of active tracks. 

The initial detection range of the robot is limited about 2 m for tracking. However, 

once a person has been detected, they could be tracked in 5m distance. A 

combination of speech, face, clothing and complexion recognition is used for 

person identification.  Once a person has been identified, specific gesture and 

speech models are employed to improve recognition in difficult environments.  

Speech recognition system consists of two functions; the first one is to understand 

speech in noisy environment. COTS (Commercial off-the-shelf) speech 

recognition system with a dictionary relevant to firefighting task is used to 

understand the speech. The second is the spatial understanding. To execute this 

task, the usage area is divided into smaller areas. The combination of periodic 

gesture and deictic gesture is used for gesture recognition.  While periodic gesture 

is describing the terms such as follow, stop and begin for searching the fire, deictic 

gesture tells the approximate location of the fire. In fire localization system, robot 

looks for a set of places at which to aim a stream of water instead of searching for 

precise location of fire.  

Zhang (2009) developed a remote controlled firefighting robot which operates 

based on a small multi-functional crawler hydraulic excavator. The capabilities of 

the robot are; walking, turning, striding, dangerous material transportation and fire 

extinguishment.  

Robot can climb over any barrier up to height of 200mm. Temperature sensor is 

used to prevent the system from fire. If the environment temperature is higher than 

the limited value, the fire extinguishment system will be activated to cool the 

robot.  A pressure sensor is installed to control the manipulator better. When an 

object grasped by the manipulator, sensor checks the pressure value, if this value 

reaches limited, system will stop to apply pressure. 

According to the functions, robot consists of four systems; remote control, 

hydraulic system, traction mechanism and working equipment. The remote control 

system is composed of a transmitter and a receiver.  The first control signal is 
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generated by control handle and coded, modulated and amplified by transmitter 

and sent to receiver. Receiver amplifies, demodulates and decodes the signal and 

then sends it to electric and hydraulic control valves. The hydraulic system 

contains; pump, hydraulic cylinders, motor, pipelines and control valves. This 

system is employed to control working equipment and traction mechanism. 

Traction mechanism and working equipment are composed of pedrail wheel, 

climbing equipment and manipulator.  
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3. MATERIAL AND METHOD 

As expressed in introduction part of thesis, it is planned to design and implement a 

fire detection mobile robot that is able to patrol and monitor environment, inspect 

and detect the fire occurrence. 

The main purpose of the robot is early fire detection at industrial areas. Although, 

firefighting is an extremely dangerous task it still being carried out by human 

operator. Time is also an extremely important parameter for firefighting tasks. 

When fire reaches the disaster situation it is too hard to control it and human 

beings often cannot do anything. Therefore, early fire detection is the best solution 

for firefighting.  

There is some fire detection robots built for early fire detection. However, they 

have many disadvantages. They can patrol at prescribed paths but the physical real 

lines are required for their operation. They often use only one of the flame, smoke 

and heat sensors to detect the fire. One sensor is not sufficient to detect fire and 

cause false alarms.  

We proposed a fire detection mobile robot which has ability to patrol at virtual 

lines and monitor the prescribed area while scanning for fire occurrence via flame, 

smoke and heat sensors. There are some difficulties to design a robot which is able 

to execute all of these tasks. So, design goals and criteria should be indicated 

carefully before the manufacturing process. The design goals and criteria are listed 

below; 

1. The first design goal is to reduce the costs and time. As the robot is designed 

for industrial applications high cost and time requirement is not acceptable. To 

reduce the cost and time; standardized, available industrial components should 

be used.  

2. The mechanic part of the robot should be robust and scalable to carry payloads 

and dynamics.  

3. The training periods for new users should be short so that new users can learn 

the mobile robot in a short time interval and produce better results. For this 

purpose, the complexity of the components should be avoided. 

4. The velocity of the robot should be high enough to patrol at industrial areas. 

For the first experiment; 0.5 m/s motion speed is adequate. The proper 

components for moving mechanism should be selected and combined. 
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5. The weight of the robot should be optimized. It should be not too heavy or too 

light. The weight affects the power consumption and balance directly. So the 

carrier board material and components should be selected carefully. 

6. Dimensions of the robot should be specified carefully. Carrier board should be 

designed carefully for good dimensioning.  

7. Energy requirement of the robot is an important parameter. Energy 

consumption is affected by dimensions, weight and motor selection directly. 

Thus, the components should be selected and designed as eco-friendly. 

8. The programming of the robot should be basic as possible so that 

understanding and changing will be easy. 

9. The system should not require real physical lines for patrolling. Thus, robot 

can operate in different areas at different paths.   

10. To detect the fire occurrence correctly; a combination of smoke, flame and 

heat sensors should be used. Otherwise, it causes the false alarms. 

3.1. Mechanical Part 

3.1.1. Carrier Board Design and Manufacturing 

There are several ways to produce the carrier board. Different material types, 

varies manufacturing and connection methods and different connector types are 

available. Before the manufacturing process, the carrier board design criteria 

should be considered carefully. First section is the board material selection. Board 

material should have some properties such as light weight, easy machining and 

high flexibility. Wooden material was selected as carrier board material. Rigid 

plastic foam was also used to prepare second layer of the carrier board.   

The selection of the board manufacturing and motor connection method is the 

second section of process. There are many methods which have been used for 

manufacturing and connection technology. These are categorized as fasteners-

adhesives, soldering, solid state and arc welding and high energy fusion. Although, 

there are many options for motor connection, connection with the fasteners-

adhesives is the best solution for our robot project because we want to build a 

modular platform which is assembled and disassembled easily. Adhesives, blind 

fasteners, rivets, screws can be used to connect motors. The rivet is the easiest 

solution because it is a cheap material and easy to find it everywhere. We used flat 

head type rivets with 4 mm head diameter. 

The third section is the preparation of the motor-carrier board connectors. We used 

L shape aluminum with 30 mm width, 80 mm length and 2 mm thickness to 
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produce the motor-carrier board connectors. Shape and dimensions of the motor 

connector are shown in Figure 3.1.   

After the selection of the proper components, we manufactured carrier board and 

motor connectors easily using simple mechanical processes such as cutting, 

drilling. Carrier board with intended dimensions (400 mm length, 300 mm width 

and 5 mm thickness) was prepared using cutting process and motor connectors 

were connected to carrier board using drilling-screwing process. 

 

Figure 3.1. Motor-carrier board connector 

3.1.2. Drawing and Dimensioning of Carrier Board 

Drawing and dimensioning of the robot’s carrier board is an important parameter. 

The dimensions of the robot affect the all other factors and parameters used in the 

robot design such as power requirement, placement of the components etc. The 

weight of the robot chassis can be calculated easily with drawing and 

dimensioning. Then this information can be used to calculate power requirement. 

Two dimensional sketches were drawn using a CAD (computer aided design) 

program and solid state drawings and assemblies were prepared using a solid 

modeling computer program. Design of the carrier board and detailed dimensions 

are given in Table 3.1. 
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Table 3.1. The design and the dimensions of carrier board 

 

 

The Dimension Type   Value of the Dimensions 

Board width 300 mm 

Board length 400 mm 

Second layer width 300 mm 

Second layer length 150 mm 

Second layer height 100 mm 

The total area of carrier board 0.12 m
2 

The total area of second layer 0.045 m
2
 

Total weight of the carrier board 0.8 kg 

The distance between wheels 370 mm 

Ground clearance 80 mm 

 

3.1.3. Traction Mechanism 

Pallet and wheel are the most common tools used at the traction mechanism. Each 

one has own advantages and disadvantages. Generally; pallet provides better 

traction performance in rough surface but they have higher cost and harder to 

assemble, wheels are easier to assemble but their traction is less than pallet’s. The 

detailed advantages of the pallet and wheel are given below (Marlene, 2014); 

Carrier board 

Motor-carrier 

board connector 

Second layer 
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The advantages of the pallet   

In straight pulling, the pallet system can develop more force than wheel for the 

same weight. Pull/ weight ratio is the ratio of pull a vehicle produces, divided by 

the vehicle weight. Normally the heavier vehicles produces more pull, whatever 

their power delivery system. Slip is the ratio of a vehicle’s actual forward speed to 

the track or wheel speed. Normally, slip increases as the pull increases. The pallet 

system has advantage for pulling parameter especially in rough terrain 

applications. 

The pallet system has advantage for optimization especially in rough terrain 

applications. Optimization is the selection of proper vehicle weight and traction 

tool set-up for a particular speed, pull and ground condition. Using a vehicle at its 

optimum gives the highest performance and lowest operation cost. Optimizing a 

vehicle with wheel for a given speed, pull and ground condition requires changes 

in ballast and tire inflation pressure. So, a vehicle with wheel may not be at an 

optimum set-up for its current working condition. With pallet traction, there are no 

pressures or weights to change so the traction system can perform at their 

optimum. 

The pallet system has advantage for power delivery efficiency. Power delivery 

efficiency is a measure of the ability of a traction system to deliver available 

engine power into useful work on the ground. Pallet system can maintain their 

efficiency over a wide range of pull and ground conditions. 

The advantages of the wheel 

The vehicles with wheel generally steered better than the vehicles with pallet. 

When a vehicle with wheel is steered, the wheels turn and point in the direction of 

the turn. When a vehicle with pallet is steered; the track on the outside of the turn 

speeds up and the track on the inside of the turn slow down. Under heavy loads, 

wheel may slide sideways as it turns, but it still turns.  Under the similar situation, 

pallet system may not turn at all. This can present a serious problem. 

Steering a pallet system requires more power than steering with wheel. The extra 

power is needed to solve the sideways slipping and speed up the outside track. 

This can cause overload problems when the vehicle is steering while operating 

near full engine load. 

As a summary; 

1. Pallet provides power efficiency, better traction on the slippery surface. 

2. The robots with the pallet look more aggressive than the robots with wheel. 

3. Pallet systems have less ground impact. 
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4. The robots with pallet can support heavy load, since they spread the weight 

over entire surface. 

5. Wheels have low production cost. 

6. Wheels need lower amount of torque to power. Therefore, they can reach high 

speeds easier than the pallets. 

7. Wheels generally lighter than the pallets. 

8. Several materials can be used to produce wheels in order to meet. 

9. Wheels have less moving parts. This means that there are fewer components 

that can get damaged. 

After the consideration of the advantages and disadvantages of the wheel and 

pallet, the wheel type traction system was selected. Wheel type traction provides; 

low cost, high speed and light weight system. With these advantages we designed 

and built an easy to use, low cost and fast fire detection robot. 

3.1.4. Wheels 

The size and material of wheel is an important parameter that mobile fire detection 

robot can move its weight and payload efficiently. The wheel selection also affects 

the torque and energy requirement of the robot. We used four pieces of Pololu PL-

1439 model wheels. Details of the wheel are given in Table 3.2. 

Table 3.2. Details of the wheels 

 

Diameter 90 mm 

Width 10 mm 

Motor connection hole diameter 6 mm 

3.1.5. Motor-Wheel Connector 

The motor connector is one of the mechanical parts of the robot that holds the 

wheel one side and motor other side. We used Pololu PL-1999 model connector 
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for motor-wheel connection. Details of the motor-wheel connector are given in 

Table 3.3. 

Table 3.3. Details of motor-wheel connector 

 

Diameter 25 mm 

Width 10 mm 

Motor connection hole diameter 6 mm 

3.1.6. Steering Method 

There are many steering methods to control the wheels or pallets and to drive the 

robots. The selection of the steering method is an important parameter which 

affects the cost, mechanical structure, electronics and control system of the robot. 

Several steering methods are described below; 

Differential Drive; is the most common steering method. The main idea is simple, 

velocity difference between two motors drive the robot in any required path and 

direction. Therefore, the name is differential drive. Differential wheeled robots 

have two independently driven wheels fixed on a common horizontal axis or three 

wheels where two independently driven wheels and a roller call attached to 

maintain the equilibrium. Four fundamental cases of the differential driving are 

given below;  

1. If both wheels are driven at the same speed and same direction (either 

clockwise or anticlockwise) the robot will move in a straight line. 

2. If the wheels rotate at equal speed but in opposite directions, both wheels will 

traverse a circular path around a point centered half way between two wheels. 

Therefore, the robot will spin in place. 

3. If one of the wheels is stopped, while the other continues to rotate, the robot 

will spin around a point centered approximately at the mid-point of the 

stopped wheel. 

4. If one wheel rotates faster than the other, the robot will follow a curved path 

and turn toward the slower wheel.  
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The advantage of this method; the design process, mechanical construction and 

control algorithm are very simple with this driving method.  

The disadvantage of the differential driving method; the robot isn’t driven as 

expected. It is neither driven along a straight line nor turned exactly at expected 

angles, especially using DC motors. This is due to difference in the number of 

rotation of each wheel in a given amount of time. To handle this problem, a 

correction factor should be added to the motor speed to reduce the faster wheel 

speed. 

The fundamental cases of the differential driving method (Anonymous, 2010 b) 

are shown in Figure 3.2. 

 

Figure 3.2. Fundamental cases of differential driving method  

Skid steering; is essentially the same as differential steering except that this type 

of steering is executed by a tracked robot, or a robot which has multiple powered 

wheels in fixed (non-steerable) positions. This steering method engages one side 

of the tracks or wheels and turning is done by generating differential velocity. In 

differentially driven robot, there is castor which balances the robot but in skid 

steer drive, the castor is replaced with two driving wheels.  Fundamental cases of 

the skid steering are indicated below; 

1. When turning left is required; the right wheels or tracks are driven forward 

and the left wheels or tracks are driven backward until the robot turns left.  

2. When turning right is required; the left wheels or tracks are driven forward 

and the right wheels or tracks are driven backward until the robot turns right.  

3. When both wheels and tracks are driven at same direction, they have 360˚ turn 

with almost 0 angle radius and moves in a straight line. 

4. When one side (right or left side) rear and front wheels or tracks rotate faster 

than the other side wheels or tracks, the slower side (center side) wheels 

almost skid to turn. Thus, the name of this steering method is skid steer.  
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Some advantages and disadvantages of skid steering method are given below; 

Advantages: 

1. This method has better traction ability than differential driving especially for 

rough terrain. 

2. The same design method and concept can be used on both tracked and 

wheeled robots. 

3. This method does not require castor wheel and so eliminates the problems 

caused by castors. 

Disadvantages: 

1. This method reduces the life time of the wheel or tracks since it uses skidding 

or slipping technique. 

2. Driving in a straight path is hard to achieve as both motors will rotate at 

different speed when expected to rotate at exactly same speed. This problem 

can be handled by other sensing devices, but it adds extra cost to steering 

mechanism. 

The fundamental cases of the skid steering method (Shamah, 1999) are shown 

Figure 3.3. 

 

Figure 3.3. Skid steering method for multi-wheeled robot  

Ackermann steering; is the one of the most common steering configuration that 

also used for robotic steering. Ackermann steering mechanically coordinates the 

angle of two front wheels which are fixed on a common axle used for steering and 

two rear wheels fixed on another axle for driving. The advantages of this steering 

method can be summarized as below; 

1. The increased control 

2. Better stability and maneuverability on the road 
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3. Less slippage and power consumption 

The Ackermann steering configuration (Hrbacek et al., 2010) is shown in Figure 

3.4. 

 

Figure 3.4. Ackermann steering method  

Ackermann steering is designed to avoid the slippage problem. To handle the 

problem; when there is turn, the inner wheel turns with a greater angle than the 

outer wheel and reduce the slippage. The Ackermann approach is generally used 

for fast outdoor robots which require excellent ground clearance and traction. 

Omni directional drive; Omni directional robots are built using Omni wheels and 

castors. As Omni wheels have smaller wheels which attached perpendicular to the 

circumference of another bigger wheel, they allow robots to move in any direction 

instantly. The major advantage of the Omni directional drive is that the wheels of 

the robot do not need to turn to move in any direction. The robots with Omni 

directional drive can move in any direction without changing their orientation. 

Generally Omni wheeled robots are equipped either three or four wheeled 

platform. Each of them has its advantages and disadvantages. Two types of the 

platform with three and four wheels (Anonymous, 2010 b) are shown in Figure 

3.5. 

 
(a) 

 
(b) 

Figure 3.5. Omni directional platforms (a) three wheels (b) four wheels  

Independent drive; in this steering method, each wheel is driven and controlled 

explicitly. The problem with this method is the coordination between the wheels as 
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each wheel heads in its own direction. When the coordination fails, it affects the 

entire system. When the coordination between the wheels is achieved, this method 

is the best choice for uneven and untested environment, since one of the wheels 

stops working; the remaining wheels can pull the robot to desired position and 

direction. The independent type of steering method (Anonymous, 2010 b) is 

shown in Figure 3.6. 

 

Figure 3.6. Independent drive  

After the consideration of steering methods; the differential steering method was 

selected for fire detection robot. The use of differential steering system makes the 

robot flexible enough for planned application (semi-structured environment, level 

area). This steering method requires the lowest number of motors, mechanic and 

electronic components. Differential steering provides low weight, long operation 

time and less power consumption advantages. With these advantages; we could 

design and build a less complicated, low cost and fast enough fire detection robot. 

3.2. Hardware 

In hardware section, the details of the hardware elements of fire detection robot 

are described. First, the required power and torque for the robot motion is 

calculated. After the calculation; the used motor set and battery unit are explained. 

3.2.1. Power Requirement Calculations 

For the calculation of the minimum required power, the maximum estimated total 

force and the desired speed must be known. The maximum total force is equal to 

sum of resistance forces. The resistance forces are; gradient force, air force (is 

assumed zero), rolling and inertial force which is equal to mass times acceleration. 

FTotal = Fgradient +Fair + Frolling + Mm x amax                                                                                             (3.1)                                                                                                                               
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Where: 

FTotal                                                                                     Maximum estimated total force 

Fgradient                                                                                 Gradient resistance force 

Fair                                                                                                             Air resistance force 

Frolling                                                                                                          Rolling resistance force 

Mm                                                                                                             Total mass of the fire detection robot platform 

amax                                                                                                             Maximum acceleration 

The forces acting on the fire detection robot are described in Figure 3.7. 

 

Figure 3.7. Resistance forces 

Gradient resistance force is the first calculated force. Gradient force is the 

component of the weight of the robot that is parallel to its path. The maximum 

force occurs when the robot climbs the maximum appointed angle. The maximum 

road angle is determined as 10˚ for our application. The estimated weight of the 

robot is 2.5 kilograms (robot and notebook weights). 

The formula of the gradient resistance force is; 

Fgradient  =   Mm   + sin ɑ x g                                                                                  (3.2) 

Where: 

a                                                                                                                 Angle of the slope that robot climbs 

g                                                                                                             The acceleration of the gravity 

The result of the (3.2) for 2.5 kilograms estimated robot weight and 10˚ slope is; 

Fgradient  = 2.5 x sin 10˚ x 9.81 ≈ 4.25 N                                                               (3.3)                                                                                            
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The second calculated force is the rolling resistance force. The rolling resistance 

mainly changes due to the deformation of the road and surface of the wheel.  

The formula of the rolling resistance force is; 

Frolling =  fr x W                                                                                                    (3.4) 

W = Mm x cos a    x g                                                                                            (3.5) 

Where: 

 fr                                                                                                    Coefficient of the rolling resistance 

W                                                                                                             Wheel load 

The rolling resistance surface mainly depends on the rolling resistance coefficient 

and the slope angle that fire detection robot operates. The rolling resistance 

coefficient (Naunheimer et al., 2011) is selected from the Table 3.4. 

Table 3.4. Coefficent of rolling resistance  

Road surface Rolling resistance coefficient  (fr )    

Smooth tarmac road 0.010 

Smooth concrete road 0.011 

Rough, good concrete surface 0.014 

Good stone paving 0.020 

Bad, worn road surface 0.035 

Soil 0.070-0.240 

Loose sand 0.150-0.300 

 

Rolling resistance coefficient is specified as 0.020 from the table. Using the 

formula (3.4) and selected coefficient; the rolling resistance force is calculated as: 

Frolling = fr x W = fr x cos a  x g = 0.020 x 2.5 x cos 10˚ x 9.81 ≈ 0.5 N               (3.6)                                       

The last resistance force comes from the acceleration. It is assumed that the fire 

detection robot has an acceleration of 0.2 m/s
2
 at the maximum power required 
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condition. The total resistance force can be found with the results of the equations 

(3.3), (3.4), maximum acceleration value and the determined mass of the robot. 

FTotal =Fgradient +Fair + Frolling + Mm x amax=4.25 + 0 +   0.5 + 2.5 x 0.2                (3.7)                                                             

FTotal  = 5.25 N                                                                                                      (3.8)     

After the calculation of the total resistance force, the required power output of the 

robot can be calculated by multiplying the total resistance force with maximum 

operational speed of the fire detection robot. The required power is calculated as: 

PM  = Ftotal  x Vmax                                                                                                           (3.9)                          

Where: 

PM                                                                                                   Required power output of the motor 

Vmax                                                                                                       Maximum speed of the robot 

Speed for the fire detection robot is determined in the range of 0.2 m/s and 0.5 

m/s. For the power calculation, the maximum speed value is assumed as 0.5 m/s. 

With the equation (3.9) required power is calculated as: 

PM  = Ftotal  x Vmax = 5.25 x0.5 = 2.625 W                                                           (3.10)                                     

We designed our robot with four steered wheels. So the calculated power 

requirement value is for four motors in our application. As a result, the power 

requirement of a single wheel is about 0.66 W. 

3.2.2. Torque Requirement Calculation 

The torque requirement is another important parameter to select the proper motors. 

Total weight and diameter of the wheels must be known to calculate torque 

requirement. The selected wheels have 90 mm diameters. 

The formula of the torque requirement is; 

T = [Mm x g x (sin a  + fr ) x d ] / 2                                                                    (3.11)                                                                            

Where: 

T                                                                                                 The torque of the axis 

d                                                                                                        The wheel diameter, in meter 

The result of the (3.11) for 2.5 kilograms estimated robot weight and 10˚ slope is;  
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T = [Mm x g x (sin a  + fr ) x d ] / 2 =  

[2.5 x 9.81 x (sin 10˚ + 0.020) x 0.09] / 2 ≈ 0.21 Nm                                       (3.12)   

As a result, the torque requirement for a single motor is about 0.053 Nm.     

To calculate the power and torque requirements of the system a “Force-Torque 

Calculator” was developed using C#. Screenshot of this calculator is given in 

Appendix-3.                                                                     

3.2.3. Motor Selection 

After the calculations of power and torque requirement, a brushed DC motor set 

was selected for robot motion. It is a proper and affordable motor when the criteria 

such as size, weight, price, power, torque and velocity outputs are taken into 

consideration. It is also easy to find this type of motor in any industrial place. 

The motor rotates at 120 rev / min and powered with 12V DC. The rated power is 

32 W with a torque of 2.6 Nm. Maximum power requirement of single motor was 

calculated about 0.66 W and torque requirement was about 0.053 Nm. The 

technical properties of the motor can easily satisfy the robot’s power and torque 

requirements. Selected motor is shown in Figure 3.8. 

 

Figure 3.8. 12 volt 120 rpm DC motor 

As mentioned before, our maximum speed expectation is 0.5 m/s. The relation 

between the angular velocity and linear velocity can be calculated as;  

The formula of the relation is: 

Vmax = r x w x 0.10472                                                                                       (3.13)                                 

Where: 

r                                                                                                 The radius of the wheel 

w                                                                                                         Angular velocity of the motor, in RPM 

(Rounds per minute) 
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Vmax = r x w = 0.045 x 120 x 0.10472   = 0.566 m / s                                       (3.14)                                               

The calculated velocity of the motor can satisfy our speed expectation from the 

robot. 

3.2.4. Energy Supply 

Fire detection robot needs energy supply to execute its tasks. The battery 

configuration selection is an important parameter in the design and 

implementation process. The dimensions, voltage, weight and recharge method are 

the important factor to select the battery type.  

There are many types of rechargeable batteries such as lithium-ion, lead-acid, 

lithium polymer and nickel-cadmium. LiPo type of rechargeable battery was 

selected as energy source. The advantages of LiPo are indicated below 

(Anonymous, 2012 e); 

1. There are low to high rate cells are available with capacities generally as little 

as 20 mAh up to 4000 mAh. 

2. LiPo batteries have a greater energy density in terms of weight. 

3. LiPo batteries provide higher volumetric density with very thin cells (under 5 

mm). 

4. There is high flexibility in cell sizes and shape with LiPo batteries. 

5. LiPo batteries offer superior stability in over voltage and high temperature 

conditions. 

6. Nowadays, many high tech electronic devices such as smart phones, GPS 

devices and netbooks employ LiPo cells. 

A LiPo type of battery unit with three cells as shown in Figure 3.9 was used in the 

system. The battery has 12V voltage and 2.2 Ah capacity specifications. System 

can be operated for one hour without recharging. As a result, battery unit can 

satisfy the energy requirement of the motors and electronic components.  

 

Figure 3.9. LiPo battery unit 
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3.3. Obstacle Avoidance (Ultrasonic Sensors) 

 Obstacle avoidance is an important feature of the fire detection robot that it can 

detect the obstacles and calculate the distance from them. Robot can move freely 

without any collision with any obstacle using this calculation. Obstacle avoidance 

is done with different technologies such as ultrasonic sensor, IR sensor, and 

camera. Each of these technologies has its own advantage and disadvantages. 

We used two HC-SR204 ultrasonic sensors (Anonymous, 2011 c) shown in Figure 

3.10 that provide 2 cm to 400 cm non-contact measurement. Its accuracy can reach 

to three millimeters. The sensor module includes ultrasonic transmitter, receiver 

and control circuit.  

 

Figure 3.10. Ultrasonic sensor  

The working principle of the sensor can be summarized as below; 

1. The module uses the at least 10 µs (microsecond) high level signal for trigger. 

2. The sensor sends eight 40 kHz sound signals and detect whether there is a 

signal back. 

3. If the signal back, the time of the output signal duration is the time from 

sending ultrasonic to returning. 

Ultrasonic ranging module has 4 pins; 

VCC : 5V supply 

GND                            Ground 

Trig : Trigger pulse input 

Echo : Echo pulse output 

The distance calculation formula is; 

D = V x t                                                                                                            (3.15) 

D = 1 / 29 x t / 2                                                                                                (3.16) 
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D = t / 58                                                                                                           (3.17) 

 Where: 

D                                                                                                 The distance from obstacle 

V                                                                                                        Speed of the sound 343.2 m/s at 

21 °C air  

t  The echo time 

The sound speed = 3, 4320 cm /1,000,000 s = 1/29 cm per µs  

The time is divided with two, since the ultrasound sensor measures the sending 

and returning times. 

The features of the ultrasonic sensor are; 

Working voltage : 5V DC 

Working current               15 mA 

Working frequency : 40 Hz 

Maximum detection range : 4 m 

Minimum detection range : 2 cm 

Measuring angle : 15˚  

Trigger input signal : 10 µs  

Dimensions : 45x20x15 mm 

3.4. Fire Detection Unit 

The most commonly used sensors for fire detection are smoke and heat sensors. 

We designed the fire detection unit using flame sensor, temperature sensor and 

smoke sensor because one sensor for fire detection cannot provide accurate fire 

detection information. For example, a smoke sensor can sense the fire when it is so 

close to fire source. Therefore, we need to use multiple sensors to detect a fire 

incident and fuse sensory data to generate reliable fire detection. 
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3.4.1. Flame Sensor 

The flame sensor is an IR receiving transistor. It uses the characteristics of the IR 

rays which are sensitive to the flame. With a special IR receiving tube the sensor 

can get the flame rays and then, turns the brightness of the flame into level signals 

to input of the processor. 

We used Arduino flame sensor (Anonymous, 2013 i) shown in Figure 3.11 which 

is suitable for 5V voltage working environment. It can detect light source in the 

range of 760 nm-1100 nm wavelength. The detection distance is to 100 cm. This 

sensor’s outputs can be digital or analog. 

 

Figure 3.11. Arduino flame sensor  

Arduino flame sensor has 4 pins; 

VCC  : 5V supply 

GND                                        Ground 

DO  : Board digital output interface (0 and 1) 

AO  : Board analog output interface 

The features of the flame sensor are; 

Wavelength range   : 760 nm-1100 nm 

Detection distance               20 cm (4.8V)-100 cm (1V) 

Detection angle  : 15° 

Operating voltage  : 3.3V-5V 

Dimensions  : 3x1.5x0.5 cm 

Weight : : 8 g 
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3.4.2. Temperature Sensor 

We used LM 35 Centigrade temperature sensor (Anonymous, 2011 d) shown in 

Figure 3.12 by Dallas Instruments in the system as temperature sensor. It is a 

precision integrated circuit temperature sensor with an output voltage linearly 

proportional to the Centigrade temperature. It provides ± 0.25 °C accuracy at room 

temperature and 0.75 °C accuracy over full range of -55 °C to 150 °C temperature. 

 

Figure 3.12. LM 35 temperature sensor 

LM 35 has 3 pins; 

VS  : 5V supply 

GND                                        Ground 

Vout  : Voltage output 

The features of the flame sensor are; 

Calibration                                       Directly in Celsius Centigrade 

Scale factor                            20 cm (4.8V) – 100 cm (1V) 

Measurement range  : -55 °C to 150 °C 

Operating voltage  : 4V to 30V 

The sensor circuit is shown in Figure 3.13. 

 

Figure 3.13. Circuit of temperature sensor  

With 10 kΩ (kilo-ohm) R1 resistance value, LM 35 sensor can measure the 

temperature at full range. Full range measurement values are given in Table 3.5. 
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Table 3.5. Full range measurement values of LM35 

Vout Temperature 

1500 mV 150 °C  

250 mV 25 °C 

-550 mV -55 °C 

3.4.3.  Smoke Sensor 

The fire smoke consists of CO (carbon monoxide), CO2 (carbon dioxide), S 

(sulfur), NO (nitrogen oxide) and water vapor. Therefore, smoke detection task 

can be carried out by detecting one of these gases.  

We used Pololu MQ-9 model CO and flammable gas sensor (Anonymous, 2013 g) 

shown in Figure 3.14 as a smoke sensor in the system. It is a semiconductor gas 

sensor that can detect the presence of carbon monoxide at concentrations from 10 

to 1,000 ppm (parts per million). The sensor can operate at temperatures from -10 

˚C to 50 ˚C. Sensitive material of the MQ-9 is SnO2 (tin oxide).  It can make 

detection by the method of high and low temperature. Sensor detects CO when 

heated by 1.5V (with low temperature) and detects combustible gases such as 

methane, propane when heated by 5V (with high temperature).  

 

Figure 3.14. MQ-9 carbon monoxide and flammable gas sensor  

The sensor circuit of MQ-9 sensor is shown in Figure 3.15. 

 

Figure 3.15. Circuit of smoke sensor 
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Two voltages; VH (heater voltage) and VC (test voltage) are required for sensor 

operation. VH is used to supply a working temperature to the sensor. VC is used as 

VRL (detect voltage) on RL (load resistance). VC and VH can use the same power 

circuit. 

The MQ-9 sensor was used with Pololu Carrier board (Anonymous, 2013 h) 

shown in Figure 3.16. This board simplifies the interface from 6 pins to 3 pins. 

Three pins are; ground, power and analog voltage output. Board has two mounting 

holes and provides convenient pads for mounting the sensor’s required-setting 

resistor. 

 

Figure 3.16. Carrier board  

The technical features of the MQ-9 sensor are: 

Consumption    : ≤ 150 mA at 5V  

Heater voltage               : 5.0V ± 0.2V (for high), 1.5V ± 0.1V (for low) 

Heater time   : 60 ± 1 second (for high), 90±1 second (for 

low) 

Load resistance  : Adjustable 

Heater resistance  : 31Ω ± 3Ω at room temperature 

Heater power consumption  : ≤ 350 mW 
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3.5. Fire Detection Robot Platform Configuration 

As mentioned before, wooden material and rigid plastic foam were chosen to build 

carrier board of the robot. Motors, battery unit and data acquisition and control 

circuits were mounted to wooden layer of the carrier board. Second layer was used 

to carry the netbook. Ultrasound sensors, fire detection unit and servo motor were 

mounted to front side of the carrier board. The general assembly of the robot 

platform is shown in Figure 3.17 

 

Figure 3.17. General assembly schematic of the robot   

The disassembly schematic of the system which shows the detailed configuration 

and components of the robot platform is shown in Figure 3.18. 
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Figure 3.18. Disassembly schematic of the fire detection robot design 

 9
0
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Names and functions of the components numbered on Figure 3.18 are shown in 

Table 3.6.   

Table 3.6. Names and functions of the components 

Number Name Function 

1 Carrier board Carrier board was used to mount and carry the other 

components such as battery unit, data acquisition 

and control circuits and fire detection unit. 

2 Second layer Top plate was produced using plastic rigid foam 

because of its manufacturing ease. Netbook was 

mounted to second layer.  

3 Motor-carrier 

board 

connector 

Motor-carrier board connector was used to connect 

motors to carrier board. 

4 Motor Brushed DC motor was selected. It was used for 

differential steering system of the robot. 

5 Motor-wheel 

connector 

Motor-wheel connector was used for motor wheel 

connection. 

6 Wheel  Four pieces of wheels were used as steering wheel 

in the system. 

7 Battery LiPo type of battery unit was mounted to carrier 

board. It was used as energy source.  

8 Netbook Netbook was used to get data from the data 

acquisition unit of the robot. 

9 Data 

acquisition and  

control circuits 

Data acquisition and control circuits were designed 

and produced for special requirements of the robot 

instead of buying a commercial card. It was used to 

get data from sensors (fire detection unit, obstacle 

sensors) and control the servo motors. These circuits 

were mounted to carrier board. 

10 Motion control 

unit 

Motion control card was designed and produced to 

control the brushed DC motors. 

11 Ultrasonic Two pieces of ultrasound sensors were employed for 

obstacle avoidance. They were mounted to front side 
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sensor of the carrier board. 

12,13,14 Fire detection 

unit 

Fire detection unit consists of flame, smoke and 

temperature sensors. Flame sensor was mounted on 

servo motor which is able to rotate 180˚. 

15 Servo motor A servo motor was used in the system to provide 

180˚ rotating ability to flame sensor. 

 

3.6. Data Acquisition and Control Circuits Design and Implementation 

Data acquisition and control circuits were designed and produced for special 

requirements of the robot, instead of buying a commercial card. These circuits 

were designed using Proteus Software. This software consists of two modules. The 

first one is Isis and second is Ares. Isis module was used to design and simulate 

the schematic diagram of the data acquisition and control circuits (these circuits 

are given in Appendix-2), after schematic diagram, Ares module was used for 

printed circuit design.  

Data acquisition and control circuits design and implementation process was 

categorized into four parts; 

1. DC motors control unit 

2. Data acquisition and communication unit 

3. Servo motor control unit 

4. Microcontrollers 

3.6.1. DC Motors Control Unit 

Motor control unit was designed to control the speed and the direction of the 

rotation of the motors. The electronic components of the motor control unit are 

listed below; 

1. Relays  

2. 1n5822 diodes 

3. IRF 3205 Power MOSFETs 

4. Capacitors 

5. ULN 2003 Darlington Transistor Array (Relay driver) 
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Relays; Four pieces (two is for left motors two is for right motors) of SPDT 

(single pole double throw) relays were used to control the DC motor’s rotation 

direction.  

Relays are electrically operated switch used to isolate one electrical circuit from 

another. A relay consists of a coil used as an electromagnet to open and close 

switches contacts. As the two circuits are isolated from one another, a lower 

voltage circuit can be used to operate relay, which will control a separate circuit 

that requires higher voltage or amperage. 

 SPDT relay configuration switches one common pole to two other poles flipping 

between them. 

As shown in Figure 3.19, the common point E completes a circuit with C point 

when the relay coil is at a rest, as no voltage is applied to it. The circuit is closed. 

When power is applied to the coil, metal level is pulled down, closing the circuit 

between points E and D, opening the circuit between E and C (Dan, 2012).  

  

Figure 3.19. SPDT relay schematic diagram  

1n5822 Diodes; Diode is an electronic component with two electrodes called as 

the anode and the cathode. Diodes can be used as rectifiers, signal limiters, voltage 

regulators, switches, signal modulators and signal mixers. Two pieces of 1n5822 

model diodes were used in DC motors control unit as rectifiers. They convert 

current from the batteries to DC, which flows in only one direction. When the 

cathode is negatively charged relative to the anode (at a voltage greater than a 

certain minimum value) current flows through the diode. If the cathode is positive 

with respect to the anode (at the same voltage as the anode, or negative by an 

amount less than certain minimum value voltage) the diode does not conduct 

current. The working principle of the diode (Margaret, 2005) is shown in Figure 

3.20 
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Figure 3.20. Working principle of the diode  

IRF 3205 Power Mosfet; Mosfet (metal oxide semiconductor field effect 

transistor) is a special type of field effect transistor. Mosfet is voltage controlled 

device. It has gate, drain and source terminals. By applying voltage at the gate, 

Mosfet generates an electrical field to control the current flow through the channel 

between drain and source. There is no current flow from the gate into the Mosfet. 

The terminals of the Mosfet (Anonymous, 2013 j) is shown in Figure 3.21 

 

Figure 3.21. Terminals of the Mosfet  

Mosfet is variable resistor, where the Gate-Source voltage difference can control 

the Drain-Source resistance. When there is no applying voltage between the Gate-

Source, the Drain-Source resistance is very high, which is almost like an open 

circuit so current can’t flow through the Drain-Source. When Gate-Source 

potential difference is applied, the Drain-Source resistance is reduced and there is 

current flowing through Drain-Source, which will be a closed circuit. 

Two pieces of N-Channel type of Mosfet was used in DC motors control unit to 

control the motor rotation speed. For N channel type of Mosfet, the source 

terminal is connected to ground. To turn the Mosfet on, raised voltage on the gate 

is required.  

Capacitors; Capacitor is a little like a battery. Although, capacitor and battery 

work in completely different ways, they both store electrical energy.  

When a capacitor is connected to the battery; once it’s charged, the capacitor has 

the same voltage as the battery. For a small capacitor, the capacity is small but 

large capacitors can hold quite a bit of charge. 

A capacitor’s storage potential called as capacitance is measured in unit’s farads. 1 

farad capacitor can store one coulomb of charge at 1 volt. One ampere represents a 

rate of electron flow of 1 coulomb of electrons per second, so 1 farad capacitor can 
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hold 1 ampere second of electrons at 1 volt. Capacitors are typically measured in 

microfarads (Marshall, 2010).  

Two pieces of 1000 micro farad 25 volt capacitors were used in DC motors control 

unit to store electrical charge for high-speed use. Capacitors with different 

capacitance and voltage values were used in other units of the circuits to regulate 

the charge for microcontrollers and other electronic components. (One 100 

microfarad 25 V and one 10 microfarad 35V capacitors are for DC motors control 

circuit, data acquisition and communication circuit and servo motor control circuit, 

four 1 microfarad 63V capacitors are for RS 232 communication module). These 

capacitors can eliminate ripples and spikes come from power supply and then, 

convert the voltage to almost direct voltage (DC) without ripples. 

ULN 2003 Darlington Transistor Array (Relay driver); The ULN 2003 is an IC 

(integrated circuit) that consists of seven Darlington Transistor pairs with high 

voltage and current capability. Each channel is rated at 500 mA and can withstand 

peak currents of 600mA. It includes suppression diodes for inductive load driving. 

Inputs are pinned opposite the output to simply board layout. 

ULN 2003 allows driving high current loads like relays and motors which require 

more power than microcontroller can supply. 5V voltage on input pin will turn on 

Darlington Pair Transistor. The load goes between the output pin and the load 

supply voltage which can be up to 50V. With this feature; 12V relays, electric 

motors, stepper motors can be driven. 

One ULN 2003 Darlington Transistor Array was used in DC motors control unit as 

relay driver. The schematic diagram of ULN 2003 Darlington Transistor Array 

(Ligo, 2012) is shown in Figure 3.22. 

 

Figure 3.22. ULN 2003 schematic diagram  

3.6.2. Data Acquisition and Communication Unit 

Data acquisition and communication unit was designed to get data from fire 

detection unit and to provide communication between microcontroller and 

netbook. The electronic components of the data acquisition and communication 

unit are listed below; 
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1. L7805 Voltage regulator 

2. Max 232 integrated circuit 

LM7805 Voltage Regulators; LM7805 is a voltage regulator integrated circuit. 

The voltage source in a circuit may have fluctuations and would not give the fixed 

voltage output. The voltage regulator maintains the output voltage at a constant 

value. 7805 provides 5V regulated power supply. The pin diagram of the LM7805 

(Anonymous, 2013 e) is shown in Figure 3.23. 

 

Figure 3.23. Pin diagram of LM7805  

Three pieces of LM7805 were used to design and build regulation circuits for data 

acquisition and communication circuit, DC motors control circuit and servo motor 

control circuit. The regulation circuits were arranged using one LM 7805, one 100 

microfarad 25V and one 10 microfarad 35V capacitors. This circuit was used to 

filter the spikes and ripple comes from power supply by blocking them and 

maintain the voltage at 5V DC which is required for microcontroller and other 

components. 

Max 232 Integrated Circuit; The Max 232 IC is used to convert the 

microcontroller logic levels to RS 232 logic levels during serial communication of 

microcontrollers with pc. The microcontroller operates at TTL (transistor-

transistor logic) logic level (0-5V) while the serial communication in pc works on 

RS 232 standards (-25V to 25V). This makes it difficult to establish a direct link 

between computer and microcontroller for communication. In data acquisition and 

communication unit, a max 232 IC was used to provide an intermediate link 

between pc and microcontroller. It is a dual driver/receiver that includes a voltage 

generator to supply RS232 voltage levels from a single 5V supply. The pin 

diagram of the Max 232 (Anonymous, 2011 b) is shown in Figure 3.24. 
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Figure 3.24. Pin diagram of the Max 232  

As shown in Figure 3.24 pin 1, 2, 3, 4, 5 and 6 are capacitor connection pins. Each 

receiver (R1 and R2) converts RS232 inputs to 5V microcontroller logic levels. 

The drivers (T1 and T2) also called as transmitters; convert the microcontroller 

input level into RS232 level. 

One Max 232 IC and a 9 pins serial port connector were used to establish a serial  

communication between microcontroller and netbook. The communication process 

is as below;   

1. Receiver pin of the microcontroller was connected to the receiver 1 out pin of 

the Max 232 IC and third pin of the 9 pin serial connector was connected to 

receiver 1 in pin of the Max 232 IC to receive information from netbook. 

2. Transmitter pin of the microcontroller was connected to the transmitter 1 in 

pin of the Max 232 IC and second pin of the 9 pin serial connector was 

connected to transmitter 1 out pin of the Max 232 IC to transmit information 

to netbook. 

3. 9 pin serial connector was connected to netbook using a RS 232 to USB 

(Universal Serial Bus) converter. 

3.6.3. Servo Motor Control Unit 

As our servo motor can operate at 5V voltage level, we drove servo motor directly 

with microcontroller and regulation circuit. Regulation circuit was used to provide 

5V regulated power supply and microcontroller was dedicated to produce 

operating signal to the servo motor. 

3.6.4. Microcontrollers 

Microcontrollers are special purpose computers. They are embedded inside some 

other device so they can control the features or actions of the device. 

Microcontrollers are dedicated to one task and run one specific program. The 

program can be stored in ROM (read-only memory) or Flash memory. They are 
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often low-power devices. A battery-operated microcontroller may consume 50 

miliwatts. 

Three Atmega 32 model 8 bit microcontrollers (first is for DC motors control, 

second is for data acquisition and communication and third is for servo motor 

control) produced by Atmega Company were used in data acquisition and control 

circuits. They execute the motion plan, control the motion and obstacle avoidance 

system through motors and ultrasonic sensors, get data from fire detection unit and 

transmit them to the netbook. The features of the used microcontroller are listed 

below (Anonymous, 2012 f); 

Speed grade  0-16 MHz  

Power consumption  1.1 mA power consumption at active mode 

Operating voltage  4.5V-5.5V operating voltage 

Input output channel  32 programmable I/O channel 

Oscillator  Internal calibrated oscillator 

Timer/counter  Two pieces of 8-bit timer/counter and one 

16-bit timer/counter 

PWM  Four Pulse width modulation channels 

ADC  Eight 10 bit analog to digital converter 

channel 

Write/erase cycle  10,000 Flash, 100,000 EEPROM 

(electronically erasable read only memory),  

write/erase cycle 

Memories  32 Kbytes flash memory, 1024 bytes 

EEPROM 2 Kbyte RAM  

USART    One programmable universal asynchronous 

receiver/transmitter 

The pin configuration of Atmega 32 is shown in Figure 3.25. 
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Figure 3.25. Pin configuration of Atmega 32 

 To operate the Atmega 32 microcontroller; 

1. A 4.7 kΩ resistor was connected between 5V power supply and reset pin of 

the microcontroller. 

2. VCC (digital supply voltage) pin of the Atmega 32 was connected to 5V 

power supply. 

3. GND pin of the Atmega 32 was connected to negative terminal of the circuit. 

4. AVCC (supply voltage for analog to digital converter) pin of the Atmega 32 

was connected to 5V power supply. 

5. AREF (analog reference) pin of the Atmega 32 was connected to the 5V 

power supply. 

Operational port and pin configuration of the used microcontrollers are given in 

Table 3.7. Microcontroller codes are given in Appendix-1. 
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Table 3.7. Port and pin configuration of microcontrollers 

1. microcontroller (DC Motors and obstacle avoidance system control) 

Port 

Name 
Pin Number 

 
7 6 5 4 3 2 1 

0 

 

C 

Right 

motors 

output 

signal 

Left 

motors 

output 

signal 

X X 

Left 

ultrasound 

echo 

signal 

 

Left 

ultrasound 

trigger 

signal 

 

Right 

ultrasound 

echo 

signal 

 

Right 

ultrasound 

trigger 

signal 

 

2. microcontroller (Data acquisition and communication) 

Port 

Nam

e 

Pin Number 

 
7 6 5 4 3 2 1 

0 

 

A X X X X X 

ADC 

Flame 

sensor 

input 

 

ADC 

Smoke 

sensor input 

ADC 

Temperature 

sensor input 

 

D X X X X X X 

Transmitter of 

serial 

communication 

 

Receiver of  

serial 

communication 

 

3. microcontroller (Servo motor control) 

Port 

Nam

e 

Pin Number 

 7 6 5 4 3 2 1 
0 

 

D X 

Servo 

motor 

output 

signal 

X X X X X X 

 

3.7. Fire Detection Robot System Architecture 

Fire detection robot system contains Motion Planning Unit, Data Acquisition and 

Control Unit, Obstacle Avoidance Unit, Fire Detection Unit and DC Motor Driver 

Unit.  

Motion planning task of the robot is executed by re-programmable 

microcontroller. First, the route plan which the robot will follow is programmed to 

microcontroller. The path distances are defined to robot through motion planning 
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program. After defining process, robot follows these lines so that it executes 

patrolling task.  

Data acquisition and control unit operates like a bridge between the netbook and 

other units. It directly controls the obstacle avoidance unit. Data acquisition and 

control unit also responsible to get information from fire detection unit. It gets 

analog outputs from flame, smoke and temperature sensors then converts them to 

digital data via ADC channel of the microcontroller. After collecting the 

information about the environmental situation, data acquisition and control unit 

transmits fire information to the netbook. 

The obstacle avoidance unit was produced using two ultrasonic sensors. They have 

15˚ measuring angle. Ultrasonic sensors need at least 10 µs pulse trigger signal for 

operation. This trigger signal is provided by data acquisition and control unit. With 

trigger signal, they send eight 40 kHz sound wave. After trigger signal they get 

echo information and then, send data to control unit that whether there is an 

obstacle or not. Control unit checks the situation. If there is an obstacle and the 

distance from obstacle is smaller than threshold value, robot will start to search for 

free path. When robot finds the free path, it changes direction and goes towards 

the free path. 

Fire detection unit consists of smoke, temperature and flame sensors. Flame sensor 

was mounted on a servo motor. While robot is executing its patrolling task, flame 

sensor scans the environment for fire information. Flame sensor has 180˚ freedom 

of movement which is provided by servo motor (90˚ right side and 90˚ left side) 

for scanning. All of the sensors acquire the environmental situation and each of 

them sends their own information to the netbook through data acquisition and 

control unit dynamically.  

Motor driver unit is responsible for motor’s actions. The direction of the motor 

rotation is controlled by motor driver unit. By motor direction control, robot is 

driven forward or backward. The speed of the motor rotation is also regulated by 

motor driver with PWM method. As robot is steered with differential method, 

motor speed regulation is important for robot turnings. 

The schematic of the fire detection robot system architecture is shown in Figure 

3.26. 
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Figure 3.26. System architecture of fire detection robot 

 1
0
2
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3.8. Fire Detection Robot System Functions 

3.8.1. Obstacle Avoidance 

Obstacle avoidance function of the fire detection robot system consists of two sub 

functions; first one is obstacle detection and second is measurement of the distance 

from robot. It can move freely without any collision with any obstacle using 

obstacle detection and obstacle measurement sub functions so that it can perform 

patrolling task without any interruption.  

As mentioned before obstacle avoidance was implemented using two ultrasonic 

sensors which mounted to front side of the robot (left ultrasonic and right 

ultrasonic). There are three basic terms in this function; safe space, danger space 

and distance (ultrasonic sensor value). Ultrasonic sensors scan for the obstacle 

occurrence and measure the distance from obstacle dynamically which will keep 

the robot not too close to any obstacle. With this measurement, data acquisition 

and control unit decide that the robot is in safe space or danger space using 

obstacle avoidance algorithm. 

Safe distance value is the preset threshold value for the distance between robot and 

obstacle. Distance value is updated by measurements when robot moves at its 

patrolling path. After scanning for the obstacle distance, sensors send their echo 

time values to microcontroller. As indicated at formula 3.17; 

D = t / 58 

The value of safe distance is determined as 60 cm. So the maximum echo time 

value for safe space is; 

Although, the distance calculation formula is given as D = t / 58 in datasheet of the 

sensors, we formulated the calculation as D = t / 22 with calibration tests. 

t = D x 22 = 60 x 22 = 1320 

Fire detection robot moves freely on its patrolling path, when the measured 

distance value is bigger than the threshold echo time value 1320. If measured echo 

time value is equal or smaller than the threshold value robot will search for 

possible free path, first on the right then left side. When it finds the free path 

whether right or left it changes the direction, goes towards the free side and then 

goes straight. 

As a summary; 

1. If distance value (ultrasonic sensor value) > safe distance value; 

Robot will continue the movement. 
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2. If distance value ≤ safe distance value; 

Robot will change its direction, find the free path. 

3.8.2. Operating the Ultrasound Sensors 

For obstacle avoidance, we programmed the microcontroller to operate the 

ultrasound sensors as desired.  

These sensors need a trigger to start the measurement process and then they send 

out an ultrasound at 40 kHz and receive its echo. Sensors calculate distance 

counting the time between sending and receiving.  The steps used to operate the 

ultrasound sensors are given below; 

1. Right ultrasound sensor’s trigger and echo pins are respectively connected to 

zeroth and first pins of C port of the microcontroller. 

2. Left ultrasound sensor’s trigger and echo pins are respectively connected to 

second and third pins of C port of the microcontroller. 

3. Trigger pins of the sensors are supplied with 15 µs pulses and then they are set 

to zero (no supply) and waited for 100 µs.  

4. The echo pin values of the sensors are ignored when its output is equal to zero 

and time up to 2,000 µs to wait the settling time of the sensors.  

5. When echo pins receive signal which means there is obstacle, they start to 

count the value of time interval. This value is the time between the sending 

and returning of the ultrasound. The maximum counting value is set as 60,000 

µs. 

6. The distance of the obstacle is calculated by microcontroller dividing the time 

value with coefficient 22.  

3.8.3. Motion Control 

Motion controlling is an important function of the robot. In the operation 

environment, it needs motion control to execute path tracking and motion planning 

and obstacle avoidance tasks. For path tracking robot has to act with different 

movements such as going straight, coming back and turning. When a strange 

object is detected, robot has to change its direction to avoid obstacle. To carry out 

these tasks an intelligent motion control is required for fire detection robot system. 

In the system DC brushed motors were used. The drive and motion control is 

convenient to operate. As long as both ends of the motor load within the rated 

voltage, the motion of the motors can be controlled.  
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The rotation directions of the motors were controlled with four relays. Two of 

them were used for left motors and the other two were for right motors. The 

principle of the motor control with relays is shown in Figure 3.27. 

 
(a) 

 
(b) 

Figure 3.27. Rotation direction of the motors (a) Clockwise rotation (b) Counter 

clockwise rotation 

To drive robot motor forward; motors are rotated clockwise direction. As seen in 

Figure 3.27-a; A pins of the relays are connected to VCC (5V) and B pins are 

connected to ground. For clockwise rotation; close circuits are completed between 

A and C in the first relay and between B1 and C1 in the second relay .To drive 

robot backward; motors are rotated the counter clock wise rotation. Close circuits 

sides are changed as seen in Figure 3.27-b. Close circuits are completed between B 

and C in first relay, between A1 and C1 in second relay. Electrical current flow 

direction is changed for two situations to change the direction of the motor rotation 

(First situation is for clockwise rotation and second is for counter-clockwise 

rotation). Four relays are controlled with ULN 2003 relay driver in the system. 

As the system is driven with differential drive steering method, speed control is 

required for turnings. Robot is able change the motion direction using PWM signal 

and direction control. The motion conditions are indicated below; 

1. Four wheels are moving at the same speed, in the same direction, robot goes 

straight. 

2. Four wheels are moving in the same direction but left wheels are moving 

faster than right wheels, robot turns right at a certain radius. 

3. Four wheels are moving in the same direction but right wheels are moving 

faster than left wheels, robot turns left at a certain radius. 
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4. Four wheels rotate at the same speed rate but in opposite direction, robot spins 

in the place. 

The relationship between the direction-speed control and robot movement is 

shown in Table 3.8; 

Table 3.8. Direction-speed and motion control 

Direction PWM signal Direction of wheels Movement of 

the robot 

Left Right Left Right Left Right  

Forward Forward 100 100 Forward Forward Forward 

Forward Forward 60 100 Forward Forward Turn left at a 

certain radius 

Forward Forward 100 60 Forward Forward Turn right at a 

certain radius 

Forward Forward 0 100 Stop Forward Turn left 

sharply 

Forward Forward 100 0 Forward Stop Turn right 

sharply 

Backward Forward 100 100 Backward Forward Spinning 

Backward Backward 100 100 Backward Backward Backward 

 

A pair of IRF 3205 power Mosfet was used in the system to control the rotation 

speed of two motors. The working principle of motion speed control with Mosfet 

is shown in Figure 3.28; 
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Figure 3.28. Speed control with power Mosfet transistor 

As shown in Figure 3.28 source pin of the Mosfet is connected to the ground, gate 

pin is connected to ULN 2003 driver and drain pin is connected to motor’s load 

end. When power Mosfet gate pin is acquired an operating signal from ULN 2003 

it completes close circuit between drain and source pins so that motor works with 

maximum power and speed. When ULN 2003 cuts off the operating signal, power 

Mosfet converts the close circuit to open circuit. Electrical current starts to flow 

between end loads of the motor in a short way which is completed with 1n5822 

diode. In this situation; motor starts to use its inertial load and energy for 

operating. As the energy is reduced in time, motor operates slower than its 

maximum value. The time interval between the mosfet’s open circuit and close 

circuit designate the duty cycle of the motors. The principle of PWM method is 

shown in Figure 3.29. 
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Figure 3.29. PWM method 

3.8.4. Fire Detection 

Three types of sensors were used in the system to detect fire event. With the 

varieties of the sensor (smoke, temperature and flame) it is possible to get more 

reliable and high accuracy results from the fire detection function. A sensor data 

fusion was used to obtain high reliable results from the fire detection unit.  

In fire detection unit, the weight is a function of the PD (probability of detection) 

of the sensors. Although the probability values may vary with time in real life, the 
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optimum detection probability values can be determined for smoke, flame and 

temperature sensors through experiments. The data fusion structure of the fire 

detection unit is shown in Figure3.30. 

 

Figure 3.30. Sensor data fusion structure of fire detection unit 

In the data fusion system of the fire detection unit the detection values of the each 

sensor; smoke (X1), flame (X2) and temperature (X3) are acquired by data fusion 

decision center. These values are considered and multiplied with weight values 

and final decision T is determined. The formula of the final decision is; 

 T = W1X1 + W2X2+ W3X3                                                                                                                                (3.18) 

T > threshold value, there is a fire. 

To find the optimum weight values for each sensor and to get accurate fire 

detection information; different variations have been experimented for different 

detection distances and fire sources.  

The computation of the rule was implemented in microcontroller of the data 

acquisition and communication unit. Data acquisition and communication unit 

received fire information from fire detection unit through and ADC channels of 

the microcontroller. Then, this information was interpreted and it was decided that 

there is a fire or not using data fusion algorithm.  

To derive the fire detection equation; PLS (Partial Least Square) analysis which is 

a method of MLR (Multiple Linear Regression) was used. To setup the analysis; 

number of factor was indicated as 15, Simple PLS algorithm and Split Cross 

Validation method were used. Analysis model was set using 200 samples for 

temperature, smoke and flame values. After settings, the analysis model was run 

using SAS (Statistical Analysis System) software. The result of the analysis is 

given below; 

∑ 
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Calculated number of factor                                 3 

Accuracy of the estimator  %97 

Coefficient of regression for 

temperature  

0.16 

Coefficient of regression for flame  0.77 

Coefficient of regression for smoke  0.07 

Using the results of the analysis the fire detection equation was derived as; 

Fire = (Temperature x 0.16) + (Flame x 0.77) + (Smoke x 0.07)                     (3.19)                                         

The flowcharts of the obstacle avoidance and fire detection processes are shown in 

Figures 3.31 and 3.32 respectively. 



111 

 

 

Figure 3.31. Flowchart of the obstacle detection function 

 

Figure 3.32. Flowchart of the fire detection function 
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4. RESULTS AND DISCUSSIONS 

In this chapter of thesis; the applied function tests of the robot are described and 

test results are discussed. Tests are categorized into four general parts; 

1. Path Tracking with Different Speed Values 

2. Implementation and Test of the Obstacle Avoidance Structure 

3. Fire Detection Test 

4. Sensor Data Fusion Algorithm Test 

4.1. Path Tracking Test with Different Speed Values 

First test for the fire detection robot was path tracking. As mentioned before; 

system has ability to move with different speed values. For path tracking test, 3 

different speed values were used. These were 0.5 m/s (maximum), 0.3 m/s and 0.2 

m/s (minimum). For path tracking test, we established a rectangular test 

environment with four corner points (A, B, C and D). The distance between A and 

B points is 425 cm, B and C points is 250 cm, C and D is 425 cm and D and A is 

250 cm. The sketch of the test environment is shown in Figure 4.1. 

 

Figure 4.1. Path tracking test environment 

A motion plan algorithm was programmed to DC motors control unit. As motion 

plan; robot starts to operate at A point and try to reach B point. Then, it waits for a 

short time interval, turns left and moves forward. It executes the same process to 

reach C, D and finish (A) point.   
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Path tracking test scenario was applied for 0.5, 0.3 and 0.2 m/s speed values. Wait 

times were added to algorithm because of the microcontroller’s processor working 

ability. Tracking ability of the robot was observed. The test settings and the results 

for 0.5, 0.3 and 0.2 m/s speed values are given in Table 4.1. 

Table 4.1. Path tracking test settings and results 

Path tracking test for 0.5 m/s speed value 

Test Settings Value Results Value 

Programmed move 

forward time for A-B and 

C-D lines 

 

9,000 ms 

(millisecond)  

Elapsed move forward 

time for  A-B and C-D 

lines 

18 s 

Programmed move 

forward time for  B-C and 

D-A lines 

 

5,000 ms 
Elapsed move forward 

time for B-C and D-A 

lines 

10 s 

Programmed left turn time 2,300 ms 
Total elapsed time for 

turns 
9.2 s 

Total path distance 1,350 cm 

Total elapsed time 

without turnings and 

waits 

28 s 

Programmed speed 0.5 m/s 
Calculated speed 0.48 

m/s 

  Total wait time 8 s 

  Total elapsed time 45.2 s 

Path tracking test for 0.3 m/s speed value 

Test Settings Value Results Value 

Programmed move 

forward time for A-B and 

C-D lines 

 

15,000 ms 
Elapsed move forward 

time for     A-B and C-D 

lines 

30 s 

Programmed move 

forward time for  B-C and 

D-A lines 

 

9,000 ms 
Elapsed move forward 

time for     B-C and D-A 

lines 

18 s 
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Programmed left turn time 2,300 ms 
Total elapsed time for 

turns 
9.2 s 

Total path distance 1,350 cm 

Total elapsed time 

without turnings and 

waits 

48 s 

Programmed speed 0.3 m/s Calculated speed 
0.28 

m/s 

  Total wait time 8 s 

  Total elapsed time 65.2 s 

Path tracking test for 0.2 m/s speed value 

Test Settings Value Results Value 

Programmed move 

forward time for A-B and 

C-D lines 

 

22,500 ms 
Elapsed move forward 

time for     A-B and C-D 

lines 

45  s 

Programmed move 

forward time for  B-C and 

D-A lines 

13,500 ms 
Elapsed move forward 

time for     B-C and D-A 

lines 

27 s 

Programmed left turn time 2,350 ms 
Total elapsed time for 

turns 
9.2 s 

Total path distance 1,350 cm 

Total elapsed time 

without turnings and 

waits 

72 s 

Programmed speed 0.2 m/s 
Calculated speed 0.19 

m/s 

  Total wait time 8 s 

  Total elapsed time 89.2 s 

 

In this test, it was observed that with the specified move forward and left turn time 

values; fire detection robot could reach the corner points of the test environment, 

turned the corners with 90˚ angle sharply and tracked its path lines accurately. But 

it has to be noted that; as the rolling resistance is changed according to the road 

surface, road surface can affect the speed, turn angle and total traveled distance 
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values of the robot. Therefore, left turn and move forward time values should be 

re-designed for new operation environment. As the motion plan unit of the robot is 

re-programmable, it can be programmed for any new environmental condition. 

Sample screenshots from the tests are shown in Figures 4.2, 4.3 and 4.3.  

 

Figure 4.2. Path tracking starting at A point 

 

Figure 4.3. Left turn at A point 

 

Figure 4.4. Path tracking between B and C points 
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4.2. Obstacle Avoidance  

Second function test of the fire detection robot was obstacle avoidance. We 

designed and implemented the obstacle avoidance function of the system based on 

two ultrasound sensors (right and left).  

4.2.1. Implementation and Test of the Obstacle Avoidance Structure 

In the obstacle avoidance structure implementation process; the sensors were 

mounted to carrier board with 15° measurement angle to avoid the interference 

between the sounds. After placement, a basic algorithm for obstacle avoidance was 

developed. The details of this algorithm are given below; 

1. If the measured distance value of right or left ultrasound sensor is smaller than 

60 cm, robot will start to search for free place.  

2. If the measured distance value of right ultrasound sensor is bigger than 

measured distance value of left ultrasound sensor which means free place is 

closer to right side, right motors will stop and left motors will run for 60 ms. 

System repeats the same process and turns right until it reaches the free place 

and then moves forward. 

3. If the measured distance value of left ultrasound sensor is bigger than 

measured distance value of right ultrasound sensor which means free place is 

closer to left side, left motors will stop and right motors will run for 60 ms. 

Robot turns left until it reaches the free place and then moves forward. 

For the obstacle avoidance function test, an environment which contains five 

obstacles was established.  

In obstacle avoidance test it was observed that the obstacle avoidance structure 

and algorithm of the system could satisfy requirements of the fire detection robot. 

The performance of the robot was tested for five times in the established test 

environment. It could reach finish point without any collision or interruption. 

Sample screenshots from the tests are shown in Figures 4.5, 4.6 and 4.7. 



117 

 

 

Figure 4.5. Obstacle avoidance test environment 

 

Figure 4.6. Avoidence of sixth obstacle (80 cm away from the obstacle) 

 

Figure 4.7. Avoidance of sixth obstacle (60 cm away from the obstacle) 
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4.3. Fire Detection Test 

The fire detection capability of the system was tested in this part using candle and 

firewood as fire sources under controlled indoor and outdoor conditions. In order 

to evaluate fire detection capability of the robot, two dimensions were tested. First 

one was the distance of the robot from the fire sources. Three different distances 

were taken into consideration based on two different fire sources mentioned 

above. The second dimension was concerning about the capability of the robot 

while it was tracking its path around the fire sources.  

To execute the fire detection capability tests; a netbook was mounted to second 

layer of the carrier board and a serial connection was established between the data 

acquisition unit and netbook to receive and save the measurement data of the 

sensors. A sample picture of this configuration is shown in Figure 4.8. 

 

Figure 4.8. Robot configuration with netbook 

4.3.1. Detection Test Based on Distances 

In the distance test, robot’s reaction to certain test conditions according to three 

different reference points away from the fire sources were taken into 

consideration. These test conditions are non-fire environment and fire within the 

range.  

The aim of these tests was to measure the reaction of the sensors while they are 

located at 50 cm, 75cm and 100 cm distances from the fire source. The detection 

tests were executed with the candle and firewood.  

At first step of the test; the intense of IR light, smoke and temperature values of 

the non-fire environment were measured for 60 seconds via sensors and saved to 

netbook. At the next step, robot was located at 50, 75 and 100 cm distances from 
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candle flame respectively. The variation of IR light, smoke and temperature values 

were measured and saved for 140 seconds. The same process was applied for 

firewood flame. Relevant obtained values based on different distances are 

summarized in Figures 4.9 to 4.26. 
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Figure 4.9. Temperature sensor values-50 cm from the candle flame 

 

Figure 4.10. Flame sensor values-50 cm from the candle flame 

 

Figure 4.11. Smoke sensor values-50 cm from candle flame 
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Figure 4.12. Temperature sensor values-75 cm from candle flame 

 

Figure 4.13. Flame sensor values-75 cm from candle flame 

 

Figure 4.14. Smoke sensor values-75 cm from candle flame 
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Figure 4.15. Temperature sensor values-100 cm from candle flame 

 

Figure 4.16. Flame sensor values-100 cm from candle flame 

 

Figure 4.17. Smoke sensor values-100 cm from candle flame 
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Figure 4.18. Temperature sensor values-50 cm from firewood flame 

 

Figure 4.19. Flame sensor values-50 cm from firewood flame 

 

Figure 4.20. Smoke sensor values-50 cm from firewood flame 
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Figure 4.21. Temperature sensor values-75 cm from firewood flame 

 

Figure 4.22. Flame sensor values-75 cm from firewood flame 

 

Figure 4.23. Smoke sensor values-75 cm from firewood flame 

0 
2 
4 
6 
8 

10 
12 
14 

2
 

1
8

 

3
4

 

5
0

 

6
6

 

8
2

 

9
8

 

1
1

4
 

1
3

0
 

1
4

6
 

1
6

2
 

1
7

8
 

1
9

4
 

2
1

0
 

2
2

6
 

2
4

2
 

2
5

8
 

Te
m

p
e

ra
tu

re
(°

C
) 

Time (s) 

Tmp 

0 

20 

40 

60 

80 

100 

2
 

1
8

 

3
4

 

5
0

 

6
6

 

8
2

 

9
8

 

1
1

4
 

1
3

0
 

1
4

6
 

1
6

2
 

1
7

8
 

1
9

4
 

2
1

0
 

2
2

6
 

2
4

2
 

2
5

8
 

Fl
am

e
 (

p
e

r)
 

Time (s) 

Flame 

0 

100 

200 

300 

400 

2
 

1
8

 

3
4

 

5
0

 

6
6

 

8
2

 

9
8

 

1
1

4
 

1
3

0
 

1
4

6
 

1
6

2
 

1
7

8
 

1
9

4
 

2
1

0
 

2
2

6
 

2
4

2
 

2
5

8
 

Sm
o

ke
 (

p
p

m
) 

Time (s) 

Smoke 



125 

 

 

Figure 4.24. Temperature sensor values-100 cm from firewood flame 

 

Figure 4.25. Flame sensor values-100 cm from firewood flame 

 

Figure 4.26. Smoke sensor values-100 cm from firewood flame 

Using the measurements of based on distances, comparison graphics for candle 

and firewood flames were derived. These comparison graphics are shown in 

Figures 4.27 to 4.32. 
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Figure 4.27. Temperature detection comparison of candle flame 

 

Figure 4.28. Flame detection comparison of candle flame 

 

Figure 4.29. Smoke detection comparison of candle flame 
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Figure 4.30. Temperature detection comparison of firewood flame 

 

Figure 4.31. Flame detection comparison of firewood flame 

 

Figure 4.32. Smoke detection comparison of firewood flame 

Temperature, flame and smoke measurement values of the candle and firewood 

flames were compared for 50 cm distance. Comparison graphics are shown in 

Figures 4.33, 4.34 and 4.35. 
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Figure 4.33. Temperature detection comparison between  

candle and firewood flame 

 

 

Figure 4.34. Flame detection comparison between candle and firewood flame 

 

Figure 4.35. Smoke detection comparison between candle and firewood flame 
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It was understood from the Figures 4.27 and 4.30 that the distance has very little 

effect on the variation of measured temperature values. The temperature of the 

non-fire environment was about 10˚C and it raised up to 12 ˚C with candle flame. 

This maximum value was measured from all of the distances. The maximum value 

of the firewood flame 13 ˚C was measured from 50 cm and 75 cm distances.  

As the flame sensor was operated with a servo motor and it had 210˚ (180˚ comes 

from servo motor and 30˚ is the feature of the sensor) scanning angle, fluctuations 

were seen in the flame detection values. The distance and flame size effects could 

be seen in Figures 4.28 and 4.31. Sensor could sense the firewood flame better 

than the candle flame as it had larger size and higher detection values were seen 

more frequent in the distance of 50 cm; it means that the detection quality 

increases as the distance decreases. 

The measured smoke value of the non-fire environment was about 290 ppm and 

maximum values were 400 ppm for candle, 900 ppm for firewood.  It was 

understood from the Figures 4.29 and 4.32 that the distance and fire source 

affected the detection quality. 

As the result of these tests, we determined that distance and type of fire source 

affected the quality of fire detection. Although system had ability to detect fire in 

the range between 10 cm and 100 cm, we specified the minimum detection 

distance as 50 cm, because of the safety reason and prevent the robot damage. 

Sample screenshot from the test is shown in Figure 4.36. 

 

Figure 4.36. Fire detection based on distance test 

4.3.2. Detection Test on Patrolling 

In this test; the reaction of the fire detection unit was investigated while robot was 

tracking its path and fire source was within detection range. Candle and firewood 

were used as fire sources. The aim of this test was to determine the fire detection 

capability of the system when it executes patrolling task with 0.5 m/s speed. While 

robot was moving, the efficiency of the sensors was experimented. 
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Experiments were carried out under controlled outdoor conditions and at evening 

hours to prevent interference between flame and sun lights. A test environment 

which has the same dimensions with path tracking test was established. At first 

step of the test; the intense of IR light, smoke and temperature values of the non-

fire environment were measured for 60 seconds via sensors and saved to netbook. 

At the next step, candle flame was located at 50 cm distance from path tracking 

route. The variation of IR light, smoke and temperature values were measured 

and saved for 140 seconds while robot is tracking its path. The same process was 

applied for firewood flame. Relevant obtained results are summarized in Figures 

4.37 to 4.42. 

 

Figure 4.37. Temperature sensor values for candle flame-mobile mode 

 

Figure 4.38. Flame sensor values for candle flame-mobile mode 
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Figure 4.39. Smoke sensor values for candle flame-mobile mode 

 

Figure 4.40. Temperature sensor values for firewood flame-mobile mode 

 

Figure 4.41. Flame sensor values for firewood flame-mobile mode 
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Figure 4.42. Smoke sensor values for firewood flame-mobile mode 

It was observed from the tests that smoke and flame sensors could detect the 

candle and firewood flames when the sources were in the detection range. While 

the non-fire smoke values were about 300 ppm; sensor values reached 400 ppm 

level for candle flame and 900 ppm level for firewood flame. Flame sensor values 

raised from per 10 to 100. It means that sensors could sense the smoke and flame 

in the range of patrolling area. As a result, fire detection robot could satisfy the fire 

detection requirements while it was executing the patrolling task. Sample 

screenshot from the test is shown in Figure 4.43. 

 

 

Figure 4.43. Mobile fire detection test 

4.3.3. Sensor Data Fusion Algorithm Test 

To get more reliable fire detection results, three sensors were used in the system 

and a data sensor data fusion algorithm was developed using the results of fire 

detection test based on distance. 
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Sensor data fusion algorithm was tested using the equation 3.19. Three different 

terms were defined for fire detection. The values of these terms are given in Table 

4.2. 

Table 4.2. Terms and values of fire detection 

Name of the situation Value 

No fire 0-0.3 

Danger 0.3-0.6 

Fire 0.6-1 

 

Three Leds (Light emitted diode) red, yellow and green were connected to fire 

detection unit circuit and fire detection algorithm equation was programmed to 

microcontroller. The algorithm was tested five times for five different distances 

using a lighter. The details of the algorithm are given below; 

1. If the calculated fire value is in the range of 0-0.3 the green Led will be turned 

on (No fire situation). 

2. If the calculated fire value is between 0.3-0.6 the yellow Led will be turned on 

(Danger situation). 

3. If the calculated fire value is between 0.6-1 the red Led will be turned on (Fire 

situation). 

The results of the test are given in Table 4.3. 
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Table 4.3. Results of the fire detection test 

Distances Performance of the algorithm 

 Test 

1 

Test 

2 

Test 

3 

Test 

4 

Test 

5 

10 cm Red Red Red Red Red 

50 cm Red Red Red Red Red 

60 cm Red Red Red Red Yellow 

80 cm Red Red Red Yellow Red 

100 cm Red Red Red Red Green 

 

As seen in the Table 4.3 system could detect the fire with hundred percent 

performances for 10 cm and 50 cm distances. For the 60 and 80 cm distances, 

system answered the lighter flame as four time fire and one time danger. One false 

alarm was shown in the 100 cm distance. Although there was a simulated fire, 

system answered as no fire. The results indicated that the developed sensor data 

fusion algorithm could answer the fire source with hundred percent performances 

in the range of 10-80 cm distances. For the 100 cm distance there was only one 

wrong answer. It can be said that the data fusion algorithm is able to produce 

reliable results. Sample screenshot is shown in Figure 4.44. 

 

Figure 4.44. Fire detection algorithm test 

Some related works are compared with our fire detection robot. These 

comparisons are given below. 
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Khoon et al. (2012) developed an autonomous fire detection mobile platform. 

Comparison between Khoon’s and our system is given in Table 4.4. 

Table 4.4. Comparison with Khoon’s system 

 Khoon’s system Our system 

Path tracking 

methods 

Physical line tracking 

with LDRs and LEDs  

Virtual path tracking with Re-

programmable motion plan and 

control unit  

Fire detection 

sensors 

Flame sensor Flame, temperature and smoke 

sensors 

Environment 

scanning 

System stops and turns 

around for 360˚ to scan 

the environment. 

Flame sensor scans the 

environment for 210˚ with servo 

motors while robot is executing 

patrolling task. 

Test method Only flame sensor’s 

voltage outputs based on 

distances are tested. 

Percent, temperature and ppm 

outputs of the sensors are tested for 

both stationary and mobile 

situations. 
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Xu et al. (2011) developed a mobile robot remote fire alarm system. Comparison 

between Xu’s and our system is given in Table 4.5. 

Table 4.5. Comparison with Xu’s system 

 Xu’s system Our system 

Path 

tracking 

methods 

Physical line tracking with 

photoelectric sensors 

Virtual path tracking with 

Re-programmable motion 

plan and control unit  

Fire 

detection 

sensors 

Although flame, temperature and 

smoke sensors are used in the 

system, fire is detected only using 

flame sensor. Temperature and 

smoke sensors are used for 

environmental measurements. 

A fire estimation model is 

developed using the 

measurement values of 

flame, temperature and 

smoke sensors. 

Obstacle 

avoidance 

methods 

IR sensors are used to detect 

obstacle. Robot is programmed to 

stop when there is an obstacle. 

Ultrasound sensors are used 

for obstacle avoidance. 

Robot is programmed to 

search for free path and pass 

the obstacle.  
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Roberto et al. (2013) proposed fire detection method using flame, temperature and 

luminosity sensors through a mobile robot platform. Comparison between 

Roberto’s and our system is given in Table 4.6. 

Table 4.6. Comparison with Roberto’s system 

 Roberto’s system Our system 

Fire 

detection 

sensors 

Flame, temperature and 

luminosity  sensors 

Flame, temperature and smoke 

sensors 

Fire 

detection 

methods 

Local data fusion approach 

and moving average filters is 

used for fire detection. 

Sensor data fusion algorithm and 

PLS analysis are used to specify 

weight values of the sensors. 

Tested fire 

sources 

Alcohol, paper Candle, firewood 

Test 

methods 

Stationary method Stationary and mobile methods 

Detection 

distances 

100 cm is determined as best 

detection distance. 

50 cm is determined as best 

detection distance. 
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5.  CONCLUSIONS  

This thesis is about to design and produce a fire detection mobile robot which can 

operate especially in industrial areas and to test its system functions.  

Throughout this study; design and manufacturing process are explained, functions 

of the robot are tested and results are discussed. The manufactured robot is a 

prototype of the planned advanced firefighting robot. The budget of this thesis is 

limited and advanced manufacturing machines, sensors and hardware cannot be 

used, so the robot is produced using the cheapest components that can be found in 

the market easily. Despite the disadvantages, fire detection robot passed the 

functions tests successfully. It executed the patrolling task easily, passed the 

obstacle without any collision or interruption, detected the fire up to 100 cm for 

stationary mode and up to 50 cm for mobile mode and its sensor data fusion 

algorithm answered the fire correctly. 

6.  RECOMMANDATIONS AND FUTURE WORKS 

By further developments and improvements, fire detection robot will have more 

functions and produce more reliable fire detection results. To improve the fire 

detection robot functions some additions and changes should be done. 

Chassis and the main body of the robot can be manufactured using fire proof 

material. With the fireproof material, robot can get into fire. The smoke, 

temperature and flame measurements can be carried out closer to fire source so 

that more reliable detection results can be obtained. 

RTK-GPS can be used for motion planning and navigation of the robot. With 

RTK-GPS receiver and a navigation algorithm the operation system of the robot is 

improved from semi-autonomous to autonomous. It can be operate at unstructured 

environments easily. 

Robot can be equipped with advanced fire detection equipment. With a minor 

change; using more flame sensor instead of scanning the environment only one 

flame sensor and servo motor, more reliable flame detection results can be 

obtained. To produce an advanced level of firefighting robot which can operate at 

real fire scenarios; combination of optical flame detectors, thermal camera and 

image processing are required. 

Wireless communication module and camera system can be integrated to robot so 

that it can send information about the fire site and communicate between the 

victims and operator.  

As future research directions, we intend to develop a prototype autonomous-

unmanned equipment that can intervene field, forest and open area fire, and that 
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can reach critical places which cannot be reached by the conventional vehicles so 

as to make first intervention, and to support rescuing operations during the fire 

incidents; and to test the equipment for its performance within the virtual and real 

time environments. 
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APPENDICES 

Appendix-1 (Microcontroller Codes) 

Path Tracking With 0.2 m/s Forward Speed 

#include <mega32a.h> 

#include <delay.h> 

void moveForward(int gear) { 

    int time=0;  

    int operatingTime=0; 

    int waitingTime=0; 

      if (gear==0) { 

          PORTC.7=0; //Right Motor Off      

          PORTC.6=0; //Left Motor Off  

          delay_ms(100); 

      } else if (gear==5) { 

          PORTC.7=1; //Right Motor On      

          PORTC.6=1; //Left Motor On  

          delay_ms(100); 

      } 

      else { 

      time=gear*20; 

      operatingTime=time; 

      waitingTime=100-time;         

            //void DCMotorControl 
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      // Place your code here 

      PORTC.7=1; //Right Motor On      

      PORTC.6=1; //Left Motor On 

delay_ms(operatingTime); 

      PORTC.7=0; //Right Motor Off      

      PORTC.6=0; //Left Motor Off      

      delay_ms(waitingTime); 

      } 

} 

void moveRight(int gear) { 

        PORTC.7=1; //Right Motor On    

    PORTC.6=0; //Left Motor Off 

    delay_ms(20*gear); 

} 

void moveLeft(int gear) { 

    PORTC.7=0; //Right Motor Off      

    PORTC.6=1; //Left Motor On 

    delay_ms(20*gear); 

} 

//UltraSound Right 

      int ultraSoundRight() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.0 = 1; // Trigger for 15 uSec 

          delay_us(15); 
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          PORTC.0 = 0; 

               delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.1 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.1 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  

        }   

//UltraSound Left 

      int ultraSoundLeft() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.2 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.2 = 0; 

          delay_us(100); 
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          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.3 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.3 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  

        }   

void turnLeft(){ 

      moveLeft(135);   // turn 90 left 

      moveForward(0); 

      delay_ms(3000); 

} 

void turnRight(){ 

      moveRight(135);   // turn 90 degree right 

      moveForward(0); 

      delay_ms(3000); 
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} 

void main(void) 

{ 

// Local variables  

unsigned short int receivedValueLeftUs, receivedValueRightUs; 

int gear=0; 

int i=0;      

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out 

Bit0=Out  

DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | 

(1<<DDB2) | (1<<DDB1) | (1<<DDB0); 

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=Out Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=Out Bit1=In 

Bit0=Out  
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DDRC=(1<<DDC7) | (1<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(1<<DDC2) | (0<<DDC1) | (1<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=0  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (0<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 

// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 
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// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 

ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 
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TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 

// USART initialization 

// USART disabled 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 
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// ADC initialization 

// ADC disabled 

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);      

while (1) 

      {  

   gear = 3;  //Forward Speed 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);  // stop 2 sec 

      delay_ms(2000) 

      turnLeft(); 

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000) 
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      turnLeft(); 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);   //stop 2 sec 

      delay_ms(2000) 

      turnLeft();     

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000); 

      turnLeft();   

   }    

} 

Path Tracking With 0.3 m/s Forward Speed 

#include <mega32a.h> 

#include <delay.h> 

void moveForward(int gear) { 

    int time=0;  

    int operatingTime=0; 

    int waitingTime=0; 

      if (gear==0) { 

          PORTC.7=0; //Right Motor Off      
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          PORTC.6=0; //Left Motor Off  

          delay_ms(100); 

      } else if (gear==5) { 

          PORTC.7=1; //Right Motor On      

          PORTC.6=1; //Left Motor On  

          delay_ms(100); 

      } 

      else { 

      time=gear*20; 

      operatingTime=time; 

      waitingTime=100-time;         

      //void DCMotorControl 

      // Place your code here 

      PORTC.7=1; //Right Motor On      

      PORTC.6=1; //Left Motor On 

      delay_ms(operatingTime); 

      PORTC.7=0; //Right Motor Off      

      PORTC.6=0; //Left Motor Off      

      delay_ms(waitingTime); 

      } 

} 

void moveRight(int gear) { 

    PORTC.7=1; //Right Motor On    

    PORTC.6=0; //Left Motor Off 
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    delay_ms(20*gear); 

} 

void moveLeft(int gear) { 

    PORTC.7=0; //Right Motor Off      

    PORTC.6=1; //Left Motor On 

    delay_ms(20*gear); 

} 

//UltraSound Right 

      int ultraSoundRight() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.0 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.0 = 0; 

          delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.1 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.1 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 
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            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  

        }  

//UltraSound Left 

      int ultraSoundLeft() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.2 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.2 = 0; 

          delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.3 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.3 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    
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          receivedValue=receivedValue/22; 

          return receivedValue;  

        }  

void turnLeft(){ 

      moveLeft(135);   // turn 90 degree left 

      moveForward(0); 

      delay_ms(3000);  

} 

void turnRight(){ 

      moveRight(135);   // turn 90 degree right 

      moveForward(0); 

      delay_ms(3000); 

} 

void main(void) 

{ 

// Local variables 

unsigned short int receivedValueLeftUs, receivedValueRightUs; 

int gear=0; 

int i=0;      

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 
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// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out 

Bit0=Out  

DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | 

(1<<DDB2) | (1<<DDB1) | (1<<DDB0); 

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=Out Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=Out Bit1=In 

Bit0=Out  

DDRC=(1<<DDC7) | (1<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(1<<DDC2) | (0<<DDC1) | (1<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=0  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (0<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 
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// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 

// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 
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ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 
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// USART initialization 

// USART disabled 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 

// ADC initialization 

// ADC disabled 

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);     

while (1) 

      {   
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      gear = 4;  //Forward Speed 4 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);  // stop 2 sec 

      delay_ms(2000); 

      turnLeft(); 

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000); 

      turnLeft(); 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);   //stop 2 sec 

      delay_ms(2000); 

      turnLeft(); 

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000); 
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      turnLeft();       

   }    

} 

Path Tracking With 0.5 m/s Forward Speed 

 #include <mega32a.h> 

#include <delay.h> 

void moveForward(int gear) { 

    int time=0;  

    int operatingTime=0; 

    int waitingTime=0; 

      if (gear==0) { 

          PORTC.7=0; //Right Motor Off      

          PORTC.6=0; //Left Motor Off  

          delay_ms(100); 

      } else if (gear==5) { 

          PORTC.7=1; //Right Motor On      

          PORTC.6=1; //Left Motor On  

          delay_ms(100); 

      } 

      else { 

      time=gear*20; 

      operatingTime=time; 

      waitingTime=100-time;         

      //void DCMotorControl 
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      // Place your code here 

      PORTC.7=1; //Right Motor On      

      PORTC.6=1; //Left Motor On 

      delay_ms(operatingTime); 

      PORTC.7=0; //Right Motor Off      

      PORTC.6=0; //Left Motor Off      

      delay_ms(waitingTime); 

      } 

} 

void moveRight(int gear) { 

    PORTC.7=1; //Right Motor On    

    PORTC.6=0; //Left Motor Off 

    delay_ms(20*gear); 

} 

void moveLeft(int gear) { 

    PORTC.7=0; //Right Motor Off      

    PORTC.6=1; //Left Motor On 

    delay_ms(20*gear); 

} 

//UltraSound Right 

      int ultraSoundRight() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.0 = 1; // Trigger for 10 uSec 

          delay_us(15); 
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          PORTC.0 = 0; 

          delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.1 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.1 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  

        }  

//UltraSound Left 

      int ultraSoundLeft() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.2 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.2 = 0; 

          delay_us(100); 
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          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.3 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.3 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  

        }  

void turnLeft(){ 

      moveLeft(135);   // turn 90 degree left 

      moveForward(0); 

      delay_ms(3000);  

} 

void turnRight(){ 

      moveRight(135);   // turn 90 degree right 

      moveForward(0); 

      delay_ms(3000); 
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} 

void main(void) 

{ 

// Local variables 

unsigned short int receivedValueLeftUs, receivedValueRightUs; 

int gear=0; 

int i=0;      

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out 

Bit0=Out  

DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | 

(1<<DDB2) | (1<<DDB1) | (1<<DDB0); 

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=Out Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=Out Bit1=In 

Bit0=Out  
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DDRC=(1<<DDC7) | (1<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(1<<DDC2) | (0<<DDC1) | (1<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=0  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (0<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 

// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 
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// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 

ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 
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TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 

// USART initialization 

// USART disabled 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 
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// ADC initialization 

// ADC disabled 

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE);     

while (1) 

      {   

      gear = 5;  //Forward Speed 5 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);  // stop 2 sec 

      delay_ms(2000); 

      turnLeft(); 

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000); 
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      turnLeft(); 

      for (i=0;i<100;i++) {   //move forward 8.5 sec 

      moveForward(gear);  

      } 

      moveForward(0);   //stop 2 sec 

      delay_ms(2000); 

      turnLeft(); 

      for (i=0;i<60;i++) {   //if its 30 it means 3 sec 

      moveForward(gear);  

      } 

      moveForward(0); // stop 2 sec 

      delay_ms(2000); 

      turnLeft();       

   }    

} 

Obstacle Avoidance Algorithm 

#include <mega32a.h> 

#include <delay.h> 

void moveForward(int gear) { 

    int time=0;  

    int operatingTime=0; 

    int waitingTime=0; 

      if (gear==0) { 

          PORTC.7=0; //Right Motor Off      



178 

 

          PORTC.6=0; //Left Motor Off 

      } else if (gear==5) { 

          PORTC.7=1; //Right Motor On      

          PORTC.6=1; //Left Motor On 

      } 

      else { 

      time=gear*20; 

      operatingTime=time; 

      waitingTime=100-time;         

      //void DCMotorControl 

      // Place your code here 

      PORTC.7=1; //Right Motor On      

      PORTC.6=1; //Left Motor On 

      delay_ms(operatingTime); 

      PORTC.7=0; //Right Motor Off      

      PORTC.6=0; //Left Motor Off      

      delay_ms(waitingTime); 

      } 

} 

void moveRight(int gear) { 

    PORTC.7=1; //Right Motor Off      

    PORTC.6=0; //Left Motor On 

    delay_ms(100*gear); 

} 
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void moveLeft(int gear) { 

    PORTC.7=0; //Right Motor Off      

    PORTC.6=1; //Left Motor On 

    delay_ms(100*gear); 

} 

//UltraSound Right 

      int ultraSoundRight() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.0 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.0 = 0; 

          delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.1 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }    

          receivedValue = 10; 

          while((PINC.1 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    
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          receivedValue=receivedValue/22; 

          return receivedValue;  

        }   

//UltraSound Left 

      int ultraSoundLeft() {   

          unsigned short int tempValue , receivedValue; 

          PORTC.2 = 1; // Trigger for 10 uSec 

          delay_us(15); 

          PORTC.2 = 0; 

          delay_us(100); 

          tempValue = 10;  // for waiting rising edge of echo   

          while((PINC.3 == 0)&&(tempValue <=2000)) 

          { 

            delay_us(1); 

            tempValue = tempValue+1; 

          }   

          receivedValue = 10; 

          while((PINC.3 == 1)&&(receivedValue <=60000)) 

          { 

            delay_us(1); 

            receivedValue = receivedValue+1; 

          }    

          receivedValue=receivedValue/22; 

          return receivedValue;  
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        }  

void main(void) 

{ 

// Local variables 

unsigned short int receivedValueLeftUs, receivedValueRightUs; 

int gear=0; 

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=Out Bit6=Out Bit5=Out Bit4=Out Bit3=Out Bit2=Out Bit1=Out 

Bit0=Out  

DDRB=(1<<DDB7) | (1<<DDB6) | (1<<DDB5) | (1<<DDB4) | (1<<DDB3) | 

(1<<DDB2) | (1<<DDB1) | (1<<DDB0); 

// State: Bit7=0 Bit6=0 Bit5=0 Bit4=0 Bit3=0 Bit2=0 Bit1=0 Bit0=0  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=Out Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=Out Bit1=In 

Bit0=Out  

DDRC=(1<<DDC7) | (1<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(1<<DDC2) | (0<<DDC1) | (1<<DDC0); 
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// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=0  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (0<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 

// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 

// OC1B output: Disconnected 

// Noise Canceler: Off 
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// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 

ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 
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TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 

// USART initialization 

// USART disabled 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 

// ADC initialization 
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// ADC disabled 

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE); 

gear=5; 

    moveForward(gear);  //Dc Motor Speed 5 --> Max Speed 

    moveRight(2) ; 

    moveLeft(2);        

while (1) 

      {   

      receivedValueRightUs  = ultraSoundRight(); 

      receivedValueLeftUs   = ultraSoundLeft(); 

      if (receivedValueRightUs<60 || receivedValueLeftUs<60) {     

            if (receivedValueRightUs>=receivedValueLeftUs) { 

                    moveRight(3); 

            } 

            else if (receivedValueLeftUs>receivedValueRightUs) { 

                    moveLeft(3); 

            } 
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            else { 

            moveForward(5);   

            }  

      } 

      else { 

      moveForward(5); 

      }          

   }    

} 

Fire Detection Sensors Data Acquisition 

#include <mega32a.h> 

// Voltage Reference: AVCC pin 

#define ADC_VREF_TYPE ((0<<REFS1) | (1<<REFS0) | (0<<ADLAR)) 

// Standard Input/Output functions 

#include <stdio.h> 

#include <delay.h> 

#include <string.h> 

// Read the AD conversion result 

unsigned int read_adc(unsigned char adc_input) 

{ 

ADMUX=adc_input | ADC_VREF_TYPE; 

// Delay needed for the stabilization of the ADC input voltage 

delay_us(10); 

// Start the AD conversion 
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ADCSRA|=(1<<ADSC); 

// Wait for the AD conversion to complete 

while ((ADCSRA & (1<<ADIF))==0); 

ADCSRA|=(1<<ADIF); 

return ADCW; 

} 

void main(void) 

{ 

// Local variables  

int i=0; 

char data[100]; 

int flameSensorValue=0, temperatureSensorValue=0, smokeSensorValue=0; 

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

//DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | 

(0<<DDB2) | (0<<DDB1) | (0<<DDB0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  
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//PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

PORTB=0x00; 

DDRB=0xD4;  

// Port C initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=in Bit0=In  

DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(0<<DDC2) | (0<<DDC1) | (0<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=Out Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (1<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=0 Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 

// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 
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// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 

// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 

ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 
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// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 

// USART initialization 

// Communication Parameters: 8 Data, 1 Stop, No Parity 

// USART Receiver: On 

// USART Transmitter: On 

// USART Mode: Asynchronous 

// USART Baud Rate: 9600 
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UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) | (0<<UPE) 

| (0<<U2X) | (0<<MPCM); 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) | 

(1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL); 

UBRRH=0x00; 

UBRRL=0x33; 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 

// ADC initialization 

// ADC Clock frequency: 125,000 kHz 

// ADC Voltage Reference: AVCC pin 

// ADC Auto Trigger Source: Free Running 

ADMUX=ADC_VREF_TYPE; 

ADCSRA=(1<<ADEN) | (0<<ADSC) | (1<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0); 

SFIOR=(0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0); 

// SPI initialization 
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// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE); 

while (1) 

      { 

      // Acquisition Sensor Data 

      //Flame Sensor Values   

      flameSensorValue = read_adc(0); // Read Analog Input 

      flameSensorValue = 1024-flameSensorValue; // Read Analog Input and 

Reverse Input Data 

      flameSensorValue = flameSensorValue / 10 ; // Converting to Percentage of 

Flame Sensor Value 

      delay_ms(10); 

      //Temperature Sensor Values 

      temperatureSensorValue = read_adc(1); // Read Analog Input 

      temperatureSensorValue = (5.0 * temperatureSensorValue * 100.0) / 1024; 

      delay_ms(10); 

      //Smoke Sensor Values 

      smokeSensorValue = read_adc(2); // Read Analog Input 

SmokeSensorValue = smokeSensorValue*2828/1000; // for converting ppm 

between 100- 10000ppm 

      delay_ms(10); 

      //Sending Data via RS232 to Netbook 



193 

 

sprintf (data, "TemperatureSensor:%d FlameSensor:Per%d SmokeSensor:%d 

ppm", temperatureSensorValue, flameSensorValue, smokeSensorValue); 

            for(i = 0; i<strlen(data); i++) 

              { 

              putchar(data[i]); 

              delay_ms(10); 

              } 

            putchar(13);  //For Newline 

        delay_ms(1000);  

      } 

} 

Fire Detection Sensors Data Fusion Algorithm 

#include <mega32a.h> 

// Declare your global variables here 

// Voltage Reference: AVCC pin 

#define ADC_VREF_TYPE ((0<<REFS1) | (1<<REFS0) | (0<<ADLAR)) 

// Standard Input/Output functions 

#include <stdio.h> 

#include <delay.h> 

#include <string.h> 

// Read the AD conversion result 

unsigned int read_adc(unsigned char adc_input) 

{ 

ADMUX=adc_input | ADC_VREF_TYPE; 
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// Delay needed for the stabilization of the ADC input voltage 

delay_us(10); 

// Start the AD conversion 

ADCSRA|=(1<<ADSC); 

// Wait for the AD conversion to complete 

while ((ADCSRA & (1<<ADIF))==0); 

ADCSRA|=(1<<ADIF); 

return ADCW; 

} 

void intializeOutputs() 

      { 

          int i=0; 

          for (i=1;i<15;i++) { 

          if (i%3==1) { 

              PORTB.0=1; // Green 

              PORTB.1=0; // Yellow 

              PORTB.2=0; // Red 

              delay_ms(200); 

           } 

          if (i%3==2) { 

              PORTB.0=0; // Green 

              PORTB.1=1; // Yellow 

              PORTB.2=0; // Red 

             delay_ms(200); 
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           }  

          if (i%3==0) { 

              PORTB.0=0; // Green 

              PORTB.1=0; // Yellow 

              PORTB.2=1; // Red 

              delay_ms(200); 

          }    

        }   

              PORTB.0=1; // Green 

              PORTB.1=1; // Yellow 

              PORTB.2=1; // Red 

              delay_ms(1500); 

              PORTB.0=0; // Green 

              PORTB.1=0; // Yellow 

              PORTB.2=0; // Red 

              delay_ms(500); 

              PORTB.0=1; // Green 

      } 

void main(void) 

{ 

// Declare your local variables here 

float firePotential = 0.0;  // 0--> Thereis no fire 0.5--> There is the possibility of 

fire 1 --> There is fire  

float weightTemperatureSensor     =  0.1698957716; 
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float weightFlameSensor               =  0.7859015343; 

float weightSmokeSensor              =  0.0707639493; 

int flameSensorValue=0, temperatureSensorValue=0, smokeSensorValue=0; 

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=Out Bit1=Out 

Bit0=Out  

DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | 

(1<<DDB2) | (1<<DDB1) | (1<<DDB0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=in Bit0=In  

DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(0<<DDC2) | (0<<DDC1) | (0<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 



197 

 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=Out Bit0=In  

DDRD=(0<<DDD7) | (0<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (1<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=0 Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 

// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 

// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 
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// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 

ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 
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TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 

// USART initialization 

// Communication Parameters: 8 Data, 1 Stop, No Parity 

// USART Receiver: On 

// USART Transmitter: On 

// USART Mode: Asynchronous 

// USART Baud Rate: 9600 

UCSRA=(0<<RXC) | (0<<TXC) | (0<<UDRE) | (0<<FE) | (0<<DOR) | (0<<UPE) 

| (0<<U2X) | (0<<MPCM); 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (1<<RXEN) | (1<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

UCSRC=(1<<URSEL) | (0<<UMSEL) | (0<<UPM1) | (0<<UPM0) | (0<<USBS) | 

(1<<UCSZ1) | (1<<UCSZ0) | (0<<UCPOL); 

UBRRH=0x00; 

UBRRL=0x33; 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 
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// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 

// ADC initialization 

// ADC Clock frequency: 125,000 kHz 

// ADC Voltage Reference: AVCC pin 

// ADC Auto Trigger Source: Free Running 

ADMUX=ADC_VREF_TYPE; 

ADCSRA=(1<<ADEN) | (0<<ADSC) | (1<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(1<<ADPS2) | (1<<ADPS1) | (1<<ADPS0); 

SFIOR=(0<<ADTS2) | (0<<ADTS1) | (0<<ADTS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE); 

intializeOutputs(); 

while (1) 

      { 

      // Place your code here  

      //Flame Sensor    
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      flameSensorValue = read_adc(0); // Read Analog Input 

      flameSensorValue = 1024-flameSensorValue; // Read Analog Input and 

Reverse Input Data 

      flameSensorValue = flameSensorValue / 10 ; // Converting to Percentage of 

Flame Sensor Value 

      delay_ms(10); 

      //Temperature Sensor    

      temperatureSensorValue = read_adc(1); // Read Analog Input 

      temperatureSensorValue = (5.0 * temperatureSensorValue * 100.0) / 1024; 

      delay_ms(10); 

      //Smoke Sensor    

      smokeSensorValue = read_adc(2); // Read Analog Input 

      smokeSensorValue = smokeSensorValue*100; // for converting ppm between 

100-10000ppm  

      delay_ms(10); 

      // Limiting results between 0 and 1 

      flameSensorValue            =  flameSensorValue/100; 

      temperatureSensorValue  =  temperatureSensorValue/150; 

      smokeSensorValue           =  smokeSensorValue/1000; 

      // Formula 

      firePotential      =  flameSensorValue*weightFlameSensor;       

      firePotential     +=  temperatureSensorValue*weightTemperatureSensor; 

      firePotential     +=  smokeSensorValue*weightSmokeSensor; 

          if  (firePotential<0.30) {  //There is no Fire 

              PORTB.0=1; // Green 
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              PORTB.1=0; // Yellow 

              PORTB.2=0; // Red 

          }else if  (firePotential>=0.30 && firePotential<0.60) {  //There is the 

possibility of fire 

              PORTB.0=0; // Green 

              PORTB.1=1; // Yellow 

              PORTB.2=0; // Red 

          }else if  (firePotential>=0.60 && firePotential<=1.00) {  //There is the 

possibility of fire 

              PORTB.0=0; // Green 

              PORTB.1=0; // Yellow 

              PORTB.2=1; // Red 

          }   

      } 

Environment Scanning With Servo Motor 

#include <mega32a.h> 

#include <delay.h> 

void main(void) 

{ 

// Local variables  

float i=0; 

// Input/Output Ports initialization 

// Port A initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  
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DDRA=(0<<DDA7) | (0<<DDA6) | (0<<DDA5) | (0<<DDA4) | (0<<DDA3) | 

(0<<DDA2) | (0<<DDA1) | (0<<DDA0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTA=(0<<PORTA7) | (0<<PORTA6) | (0<<PORTA5) | (0<<PORTA4) | 

(0<<PORTA3) | (0<<PORTA2) | (0<<PORTA1) | (0<<PORTA0); 

// Port B initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRB=(0<<DDB7) | (0<<DDB6) | (0<<DDB5) | (0<<DDB4) | (0<<DDB3) | 

(0<<DDB2) | (0<<DDB1) | (0<<DDB0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTB=(0<<PORTB7) | (0<<PORTB6) | (0<<PORTB5) | (0<<PORTB4) | 

(0<<PORTB3) | (0<<PORTB2) | (0<<PORTB1) | (0<<PORTB0); 

// Port C initialization 

// Function: Bit7=In Bit6=In Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRC=(0<<DDC7) | (0<<DDC6) | (0<<DDC5) | (0<<DDC4) | (0<<DDC3) | 

(0<<DDC2) | (0<<DDC1) | (0<<DDC0); 

// State: Bit7=T Bit6=T Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTC=(0<<PORTC7) | (0<<PORTC6) | (0<<PORTC5) | (0<<PORTC4) | 

(0<<PORTC3) | (0<<PORTC2) | (0<<PORTC1) | (0<<PORTC0); 

// Port D initialization 

// Function: Bit7=In Bit6=Out Bit5=In Bit4=In Bit3=In Bit2=In Bit1=In Bit0=In  

DDRD=(0<<DDD7) | (1<<DDD6) | (0<<DDD5) | (0<<DDD4) | (0<<DDD3) | 

(0<<DDD2) | (0<<DDD1) | (0<<DDD0); 

// State: Bit7=T Bit6=0 Bit5=T Bit4=T Bit3=T Bit2=T Bit1=T Bit0=T  

PORTD=(0<<PORTD7) | (0<<PORTD6) | (0<<PORTD5) | (0<<PORTD4) | 

(0<<PORTD3) | (0<<PORTD2) | (0<<PORTD1) | (0<<PORTD0); 

// Timer/Counter 0 initialization 

// Clock source: System Clock 
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// Clock value: Timer 0 Stopped 

// Mode: Normal top=0xFF 

// OC0 output: Disconnected 

TCCR0=(0<<WGM00) | (0<<COM01) | (0<<COM00) | (0<<WGM01) | 

(0<<CS02) | (0<<CS01) | (0<<CS00); 

TCNT0=0x00; 

OCR0=0x00; 

// Timer/Counter 1 initialization 

// Clock source: System Clock 

// Clock value: Timer1 Stopped 

// Mode: Normal top=0xFFFF 

// OC1A output: Disconnected 

// OC1B output: Disconnected 

// Noise Canceler: Off 

// Input Capture on Falling Edge 

// Timer1 Overflow Interrupt: Off 

// Input Capture Interrupt: Off 

// Compare A Match Interrupt: Off 

// Compare B Match Interrupt: Off 

TCCR1A=(0<<COM1A1) | (0<<COM1A0) | (0<<COM1B1) | (0<<COM1B0) | 

(0<<WGM11) | (0<<WGM10); 

TCCR1B=(0<<ICNC1) | (0<<ICES1) | (0<<WGM13) | (0<<WGM12) | 

(0<<CS12) | (0<<CS11) | (0<<CS10); 

TCNT1H=0x00; 

TCNT1L=0x00; 
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ICR1H=0x00; 

ICR1L=0x00; 

OCR1AH=0x00; 

OCR1AL=0x00; 

OCR1BH=0x00; 

OCR1BL=0x00; 

// Timer/Counter 2 initialization 

// Clock source: System Clock 

// Clock value: Timer2 Stopped 

// Mode: Normal top=0xFF 

// OC2 output: Disconnected 

ASSR=0<<AS2; 

TCCR2=(0<<PWM2) | (0<<COM21) | (0<<COM20) | (0<<CTC2) | (0<<CS22) | 

(0<<CS21) | (0<<CS20); 

TCNT2=0x00; 

OCR2=0x00; 

// Timer(s)/Counter(s) Interrupt(s) initialization 

TIMSK=(0<<OCIE2) | (0<<TOIE2) | (0<<TICIE1) | (0<<OCIE1A) | 

(0<<OCIE1B) | (0<<TOIE1) | (0<<OCIE0) | (0<<TOIE0); 

// External Interrupt(s) initialization 

// INT0: Off 

// INT1: Off 

// INT2: Off 

MCUCR=(0<<ISC11) | (0<<ISC10) | (0<<ISC01) | (0<<ISC00); 

MCUCSR=(0<<ISC2); 
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// USART initialization 

// USART disabled 

UCSRB=(0<<RXCIE) | (0<<TXCIE) | (0<<UDRIE) | (0<<RXEN) | (0<<TXEN) | 

(0<<UCSZ2) | (0<<RXB8) | (0<<TXB8); 

// Analog Comparator initialization 

// Analog Comparator: Off 

// The Analog Comparator's positive input is 

// connected to the AIN0 pin 

// The Analog Comparator's negative input is 

// connected to the AIN1 pin 

ACSR=(1<<ACD) | (0<<ACBG) | (0<<ACO) | (0<<ACI) | (0<<ACIE) | 

(0<<ACIC) | (0<<ACIS1) | (0<<ACIS0); 

SFIOR=(0<<ACME); 

// ADC initialization 

// ADC disabled 

ADCSRA=(0<<ADEN) | (0<<ADSC) | (0<<ADATE) | (0<<ADIF) | (0<<ADIE) | 

(0<<ADPS2) | (0<<ADPS1) | (0<<ADPS0); 

// SPI initialization 

// SPI disabled 

SPCR=(0<<SPIE) | (0<<SPE) | (0<<DORD) | (0<<MSTR) | (0<<CPOL) | 

(0<<CPHA) | (0<<SPR1) | (0<<SPR0); 

// TWI initialization 

// TWI disabled 

TWCR=(0<<TWEA) | (0<<TWSTA) | (0<<TWSTO) | (0<<TWEN) | (0<<TWIE); 

PORTD.6=0; 

delay_ms(1000); 



207 

 

while (1) 

      { 

      // For scanning enviroment with flame sensor  

      for (i=3.40;i>0.30;i-=0.01){ 

      PORTD.6=0; 

      PORTD.6=1; 

      delay_ms(i); 

      PORTD.6=0; 

      delay_ms(20);     

      if (i>1.5 && i<1.7)   { 

      delay_ms(20); 

      } 

      } 

      //delay_ms(300); 

      for (i=0.10;i<3.90;i+=0.01){ 

      PORTD.6=0; 

      PORTD.6=1; 

      delay_ms(i); 

      PORTD.6=0; 

      delay_ms(20);     

      if (i>1.5 && i<1.7)   { 

      delay_ms(20); 

      } 
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Appendix-2 (Data Acquisition and Control Circuits)  

 

Figure 7.1. Data acquisition and communication circuit 

 

Figure 7.2. DC motor control circuit 
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Figure 7.3. Servo motor control circuit 

Appendix-3 (Force and Torque Calculator) 

 

Figure 7.4. Force-Torque Calculator 
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